2024 course edition
Second course edition, taught at UNAM in 2024.
Instructors
Schedule
Introduction
- Introduction (slides)
Week 1
- Lecture: Python (slides)
- Tutorial: Python (notebook, notebook slides)
- Tutorial: Jupyter (notebook, notebook slides)
Week 2
- Lecture: Images (slides)
- Tutorial: Numpy (notebook, notebook slides)
- Exercises: notebook
Week 3
Week 4
Week 5
Week 6
- Lecture: Features & Motion Estimation (slides part 1, slides part 2)
- Exercises: notebook
Week 7
Week 8
Week 9
Week 10
- Lecture: Machine Learning IV - Random Forests (slides, by Ronny Hänsch)
Week 11
Week 12
Week 13
- Lecture: Deep Learning III - custom project & dataset (slides)
Recommended Literature
- Alegre, E., Pajares, G., de la Escalera, A. (2016). Conceptos y Métodos en Visión por Computador. CEA
- Szeliski, R. (2021). Computer Vision: Algorithms and Applications (2nd ed.). Springer
- Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras and TensorFlow. O’Reilly Media, Inc.
- James, G., Witten, D., Hastie, T., Tibshirani, R. (2013). An Introduction to Statistical Learning: with Applications in R. Springer
- Chollet, F. (2021). Deep learning with Python. Manning
- Elgendy, M. (2020). Deep learning for vision systems. Manning