Lecture 04 Morphology and Segmention

2024-09-04

Sébastien Valade

1. Introduction

- 2. Mathematical Morphology
- 3. Rank filters
- 4. Image Segmentation
- 5. Exercises

Introduction

<u>Previous lecture</u>: **convolution**: $f(x, y), g(x, y), \underline{w}: \mathbb{N} \to \mathbb{R}$ where $w = \underline{\text{filter kernel}}$ $\to (\text{mostly})$ linear operators

Today:

morphology:
$$f(x, y), g(x, y), \underline{\mathbf{b}}: \mathbb{N} \to \{0, 1\}$$

where b = structuring element

ightarrow non-linear operators

ightarrow concerned with connectivity and shape (close to set theory)

segmentation:

ightarrow labeling image pixels to partition an image into regions

Introduction

```
 \begin{array}{l} \underline{\text{Previous lecture:}}\\ \hline \textbf{convolution:} \ f(x,y), \ g(x,y), \ \underline{\textbf{w}}: \ \mathbb{N} \to \mathbb{R}\\ \text{where } w = \underline{\text{filter kernel}}\\ \to (\text{mostly}) \ \text{linear operators} \end{array}
```

Today:

$$\overrightarrow{\textbf{morphology:}} \ f(x,y), \ g(x,y), \ \overrightarrow{\textbf{b}}: \ \mathbb{N} \to \{0,1\}$$

where b = structuring element

 \rightarrow non-linear operators

 \rightarrow concerned with connectivity and shape (close to set theory)

segmentation:

ightarrow labeling image pixels to partition an image into regions

Introduction

<u>Previous lecture</u>: **convolution**: $f(x, y), g(x, y), \underline{w}: \mathbb{N} \to \mathbb{R}$ where $w = \underline{\text{filter kernel}}$ $\to (\text{mostly})$ linear operators

Today:

norphology:
$$f(x, y)$$
, $g(x, y)$, **b**: $\mathbb{N} \to \{0, 1\}$

where b = structuring element

 \rightarrow non-linear operators

 \rightarrow concerned with connectivity and shape (close to set theory)

segmentation:

 \rightarrow labeling image pixels to partition an image into regions

1. Introduction

2. Mathematical Morphology

- 1. Basic concepts
- 2. Primitive Morphological Operations
- 3. Composite Morphological Operations
- 3. Rank filters
- 4. Image Segmentation
- 5. Exercises

Mathematical morphology

- Initially proposed for *binary images*, to *quantify minerals characteristics from thin cross sections* (Matheron and Serra, 1964)
 - $\rightarrow~\mbox{compute}$ size distribution of spheres
 - $\rightarrow\,$ introduction of the concepts of <code>opening/closing</code>, <code>erosion/dilation</code>
- Later extended to gray-scale images, and later color images.
- Main applications:
 - Image pre-processing (noise filtering, shape simplification)
 - Enhancing object structure (skeletonizing, convex hull, ...)
 - Segmentation
 - Quantitative description of objects (area, perimeter, ...)

Mathematical morphology

- Initially proposed for *binary images*, to *quantify minerals characteristics from thin cross sections* (Matheron and Serra, 1964)
 - $\rightarrow~\mbox{compute}$ size distribution of spheres
 - $\rightarrow\,$ introduction of the concepts of <code>opening/closing</code>, <code>erosion/dilation</code>
- Later extended to gray-scale images, and later color images.
- Main applications:
 - Image pre-processing (noise filtering, shape simplification)
 - Enhancing object structure (skeletonizing, convex hull, ...)
 - Segmentation
 - Quantitative description of objects (area, perimeter, ...)

Mathematical morphology

- Initially proposed for *binary images*, to *quantify minerals characteristics from thin cross sections* (Matheron and Serra, 1964)
 - $\rightarrow~\mbox{compute}$ size distribution of spheres
 - $\rightarrow\,$ introduction of the concepts of <code>opening/closing</code>, <code>erosion/dilation</code>
- Later extended to gray-scale images, and later color images.
- Main applications:
 - Image pre-processing (noise filtering, shape simplification)
 - Enhancing object structure (skeletonizing, convex hull, ...)
 - Segmentation
 - Quantitative description of objects (area, perimeter, ...)

Morphological filtering mechanics are similar to spatial filtering using convolutions:

1) a kernel called a **structuring element** is used to determine filtering operation:

- the <u>size</u> is determined by the matrix dimensions
- the shape is determined by the pattern of 1 and 0 in the matrix
- the origin is usually the matrix center, although it can also off-centered or even outside it

 \underline{NB} : like convolution kernels, it is common to have structuring elements of odd dimensions with the center as the origin. \underline{NB} : the shape, size, and orientation of the structuring element depends on application

Morphological filtering mechanics are similar to spatial filtering using convolutions:

1) a kernel called a **structuring element** is used to determine filtering operation:

- the <u>size</u> is determined by the matrix dimensions
- the shape is determined by the pattern of 1 and 0 in the matrix
- the origin is usually the matrix center, although it can also off-centered or even outside it

 \underline{NB} : like convolution kernels, it is common to have structuring elements of odd dimensions with the center as the origin. \underline{NB} : the shape, size, and orientation of the structuring element depends on application

Morphological filtering mechanics are similar to spatial filtering using convolutions:

1) a kernel called a **structuring element** is used to determine filtering operation:

- the <u>size</u> is determined by the matrix dimensions
- the shape is determined by the pattern of 1 and 0 in the matrix
- the origin is usually the matrix center, although it can also off-centered or even outside it

 $\frac{NB}{NB}:$ like convolution kernels, it is common to have structuring elements of odd dimensions with the center as the origin. $\frac{NB}{NB}:$ the shape, size, and orientation of the structuring element depends on application

Morphological filtering mechanics are similar to spatial filtering using convolutions:

1) a kernel called a **structuring element** is used to determine filtering operation:

- the size is determined by the matrix dimensions
- the shape is determined by the pattern of 1 and 0 in the matrix
- the origin is usually the matrix center, although it can also off-centered or even outside it

 $\frac{NB}{NB}:$ like convolution kernels, it is common to have structuring elements of odd dimensions with the center as the origin. $\frac{NB}{NB}:$ the shape, size, and orientation of the structuring element depends on application

2) the image is first $\underline{padded},$ and the structuring element than \underline{slides} across it

2. Mathematical Morphology

2.2. Primitive Morphological Operations

- 2. Mathematical Morphology
- 2.2. Primitive Morphological Operations

Considering a set of pixels F of a binary image, and a structuring element b:

3x3 structuring element

Primitive Morphological Operations:

- \Rightarrow **<u>dilation</u>**: $F \oplus b \longrightarrow growth$ of foreground pixels
- \Rightarrow <u>erosion</u>: $F \ominus b$ \rightarrow *shrinkage* of foreground pixels

Composite Morphological Operations

- $\Rightarrow \textbf{ closing: } F \bullet b = (F \oplus b) \ominus b$
- $\Rightarrow \text{ opening: } F \circ b = (F \ominus b) \oplus b$

- \rightarrow concatenation of <u>dilation</u> and <u>erosion</u>
 - ightarrow concatenation of <u>erosion</u> and <u>dilation</u>

- 2. Mathematical Morphology
- 2.2. Primitive Morphological Operations

Considering a set of pixels F of a binary image, and a structuring element b:

3x3 structuring element

Primitive Morphological Operations:

- \Rightarrow <u>dilation</u>: $F \oplus b \longrightarrow growth$ of foreground pixels
- \Rightarrow erosion: $F \ominus b$ \rightarrow shrinkage of foreground pixels

Composite Morphological Operations

- $\Rightarrow \textbf{ closing: } F \bullet b = (F \oplus b) \ominus b$
- $\Rightarrow \text{ opening: } F \circ b = (F \ominus b) \oplus b$

 \rightarrow concatenation of <u>dilation</u> and <u>erosion</u>

ightarrow concatenation of <u>erosion</u> and <u>dilation</u>

- 2. Mathematical Morphology
- 2.2. Primitive Morphological Operations

Considering a set of pixels F of a binary image, and a structuring element b:

3x3 structuring element

Primitive Morphological Operations:

- \Rightarrow <u>dilation</u>: $F \oplus b \longrightarrow growth$ of foreground pixels
- \Rightarrow <u>erosion</u>: $F \ominus b$ \rightarrow *shrinkage* of foreground pixels

Composite Morphological Operations

- $\Rightarrow \operatorname{closing}: F \bullet b = (F \oplus b) \ominus b$
- $\Rightarrow \text{ <u>opening</u>: } F \circ b = (F \ominus b) \oplus b$

- ightarrow concatenation of <u>dilation</u> and <u>erosion</u>
- \rightarrow concatenation of $\underline{\mathit{erosion}}$ and $\underline{\mathit{dilation}}$

Primitive Morphological Operations

1. Dilation

 \Rightarrow mathematical definition: the dilation of set F withstructuring element b is a Minkowski addition:

$$G = F \oplus b = \{x : (\hat{b})_x \cap F \neq \emptyset\}$$

 \Rightarrow <u>in words</u>: if ≥ 1 element of F intersects \hat{b} then assign "1" to center of b, else assign "0"

Primitive Morphological Operations

1. Dilation

 \Rightarrow mathematical definition: the dilation of set F withstructuring element b is a Minkowski addition:

$$G = F \oplus b = \{x : (\hat{b})_x \cap F \neq \emptyset\}$$

 \Rightarrow <u>in words</u>: if ≥ 1 element of F intersects \hat{b} then assign "1" to center of b, else assign "0"

Primitive Morphological Operations

1. Dilation

 \Rightarrow mathematical definition: the dilation of set F withstructuring element b is a Minkowski addition:

$$G = F \oplus b = \{x : (\hat{b})_x \cap F \neq \emptyset\}$$

 \Rightarrow <u>in words</u>: if ≥ 1 element of F intersects \hat{b} then assign "1" to center of b, else assign "0"

- 2. Mathematical Morphology
- 2.2. Primitive Morphological Operations

- 1. Dilation
 - $\Rightarrow~$ the structuring element $\underline{\it slides}$ across the entire image

- 2. Mathematical Morphology
- 2.2. Primitive Morphological Operations

- 1. Dilation
 - \Rightarrow *shape* of the structuring element b determines the effect of the dilation

- 2. Mathematical Morphology
- 2.2. Primitive Morphological Operations

- 1. Dilation
 - \Rightarrow *size* of the structuring element b determines the effect of the dilation

dilation (b=3x3)

- 2. Mathematical Morphology
- 2.2. Primitive Morphological Operations

- 1. Dilation
 - \Rightarrow *size* of the structuring element b determines the effect of the dilation

dilation (b=7x7)

- 2. Mathematical Morphology
- 2.2. Primitive Morphological Operations

- 1. Dilation
 - \Rightarrow *size* of the structuring element b determines the effect of the dilation

original

dilation (b=**11x11**)

Primitive Morphological Operations

2. Erosion

 \Rightarrow *mathematical definition*: the erosion of set *F* with structuring element *b* is defined as:

$$G = F \ominus b = \{x : (b)_x \subseteq F\}$$

 \Rightarrow <u>in words</u>: if <u>all elements</u> of F within b are 1, then assign "1" to center of b, else assign "0"

Primitive Morphological Operations

2. Erosion

 \Rightarrow *mathematical definition*: the erosion of set *F* with structuring element *b* is defined as:

$$G = F \ominus b = \{x : (b)_x \subseteq F\}$$

 \Rightarrow <u>in words</u>: if <u>all elements</u> of F within b are 1, then assign "1" to center of b, else assign "0"

Primitive Morphological Operations

2. Erosion

 \Rightarrow *mathematical definition*: the erosion of set *F* with structuring element *b* is defined as:

$$G = F \ominus b = \{x : (b)_x \subseteq F\}$$

 \Rightarrow <u>in words</u>: if <u>all elements</u> of F within b are 1, then assign "1" to center of b, else assign "0"

- 2. Mathematical Morphology
- 2.2. Primitive Morphological Operations

- 2. Erosion
 - $\Rightarrow~$ the structuring element $\underline{\it slides}$ across the entire image

- 2. Mathematical Morphology
- 2.2. Primitive Morphological Operations

- 2. Erosion
 - \Rightarrow *size* of the structuring element b determines the effect of the erosion

erosion (b=3x3)

- 2. Mathematical Morphology
- 2.2. Primitive Morphological Operations

- 2. Erosion
 - \Rightarrow *size* of the structuring element b determines the effect of the erosion

original

background = 0 foreground = 1 erosion (b=7x7)

- 2. Mathematical Morphology
- 2.2. Primitive Morphological Operations

- 2. Erosion
 - \Rightarrow *size* of the structuring element b determines the effect of the erosion

original

erosion (b=11x11)

- Primitive morphological operations (dilation & erosion) results are "coarse" \rightarrow
- **Composite morphological operations** are useful to avoid some pitfalls: \Rightarrow

 - closing: $F \bullet b = (F \oplus b) \ominus b \rightarrow \text{concatenation of } \underline{dilation} \text{ and } \underline{erosion}$

 - opening: $F \circ b = (F \ominus b) \oplus b \rightarrow \text{concatenation of } erosion \text{ and } dilation$

Composite Morphological Operations

1. Opening

Problem: erosion removes unwanted small foreground objects, BUT other foreground objects shrink

Solution: after erosion, apply dilation with the same structuring element \Rightarrow opening

 $G = F \circ b = (F \ominus b) \oplus b$

original

EROSION (b=3x3)

1. Opening

<u>Problem</u>: <u>erosion</u> removes unwanted small foreground objects, BUT other foreground objects shrink <u>Solution</u>: after erosion, apply dilation with the same structuring element \Rightarrow opening

$$G = F \circ b = (F \ominus b) \oplus b$$

original

EROSION (b=3x3)

OPENING (b=3x3)

Composite Morphological Operations

2. Closing

Problem: dilation closes small background objects (holes), BUT foreground objects get enlarged

<u>Solution</u>: after dilation, apply erosion with the same structuring element \Rightarrow closing

 $G = F \bullet b = (F \oplus b) \ominus b$

original

DILATION (b=3x3)

2. Closing

<u>Problem</u>: <u>dilation</u> closes small background objects (holes), BUT foreground objects get enlarged <u>Solution</u>: after dilation, apply erosion with the same structuring element \Rightarrow closing

$$G = F \bullet b = (F \oplus b) \ominus b$$

original

DILATION (b=3x3)

CLOSING (b=3x3)

1. Introduction

2. Mathematical Morphology

3. Rank filters

- 4. Image Segmentation
- 5. Exercises

3. Rank filters

<u>**Rank filters**</u> = nonlinear spatial filters whose response is based on <u>ordering</u> (<u>ranking</u>) the pixels contained in the region encompassed by the neighborhood **b**, and replacing the value of the center pixel with the value determined by the ranking result (*Gonzalez and Woods, 2018*)

 \Rightarrow Rank filters are a generalization of flat dilation/erosion: in lieu of min or max value in window, use the p-th ranked value

- → get $\underline{minimum}$ value in the neighborhood (0th percentile) $\Leftrightarrow \underline{erosion}$ \Rightarrow useful for finding the darkest points in an image or for eroding light regions adjacent to dark areas
- → get <u>maximum</u> value in the neighborhood (100th percentile) ⇔ <u>dilation</u>
 ⇒ useful for finding the brightest points in an image or for eroding dark regions adjacent to bright areas
- \rightarrow get <u>median</u> value in the neighborhood (50th percentile) \Rightarrow very effective for salt-and-pepper noise reduction

3. Rank filters

<u>**Rank filters**</u> = nonlinear spatial filters whose response is based on <u>ordering</u> (<u>ranking</u>) the pixels contained in the region encompassed by the neighborhood **b**, and replacing the value of the center pixel with the value determined by the ranking result (*Gonzalez and Woods, 2018*)

 \Rightarrow Rank filters are a generalization of flat dilation/erosion: in lieu of min or max value in window, use the p-th ranked value

- → get <u>minimum</u> value in the neighborhood (0th percentile) \Leftrightarrow <u>erosion</u> \Rightarrow useful for finding the darkest points in an image or for eroding light regions adjacent to dark areas
- → get <u>maximum</u> value in the neighborhood (100th percentile) $\Leftrightarrow \underline{dilation}$ \Rightarrow useful for finding the brightest points in an image or for eroding dark regions adjacent to bright areas
- \rightarrow get <u>median</u> value in the neighborhood (50th percentile) \Rightarrow very effective for salt-and-pepper noise reduction

1. Introduction

- 2. Mathematical Morphology
- 3. Rank filters

4. Image Segmentation

- 1. histogram-based segmentation
- 2. edge-based segmentation
- 3. region-based segmentation
- 4. analyze segmented image

5. Exercises

Image segmentation = labeling image pixels to partition an image into regions

Image segmentation = labeling image pixels to partition an image into regions

- Histogram-based segmentation
 - \Rightarrow based on thresholding of pixel values
 - ex: manual thresholding
 - ex: automatic thresholding (e.g., Otsu)
 - \underline{ex} : k-means clustering

• Edge-based segmentation

 \Rightarrow based on local $\operatorname{contrast}
ightarrow$ uses gradients rather than the grey values

• Region-based segmentation

⇒ based on image region properties <u>ex</u>: Watershed transform <u>ex</u>: Random Walker

- ex: Flood Fill
- Many other!

Image segmentation = labeling image pixels to partition an image into regions

- Histogram-based segmentation
 - \Rightarrow based on thresholding of pixel values
 - ex: manual thresholding
 - ex: automatic thresholding (e.g., Otsu)
 - ex: k-means clustering

Edge-based segmentation

 \Rightarrow based on local <u>contrast</u> \rightarrow uses gradients rather than the grey values

• Region-based segmentation

⇒ based on image region properties <u>ex</u>: Watershed transform <u>ex</u>: Random Walker ex: Flood Fill

• Many other!

Image segmentation = labeling image pixels to partition an image into regions

- Histogram-based segmentation
 - \Rightarrow based on thresholding of pixel values
 - ex: manual thresholding
 - ex: automatic thresholding (e.g., Otsu)
 - ex: k-means clustering
- Edge-based segmentation
 - \Rightarrow based on local <u>contrast</u> \rightarrow uses gradients rather than the grey values
- Region-based segmentation
 - \Rightarrow based on image region properties
 - \underline{ex} : Watershed transform
 - ex: Random Walker
 - ex: Flood Fill
- Many other!

Image segmentation = labeling image pixels to partition an image into regions

- Histogram-based segmentation
 - \Rightarrow based on thresholding of pixel values
 - ex: manual thresholding
 - ex: automatic thresholding (e.g., Otsu)
 - ex: k-means clustering
- Edge-based segmentation
 - \Rightarrow based on local <u>contrast</u> \rightarrow uses gradients rather than the grey values
- Region-based segmentation
 - \Rightarrow based on image region properties
 - \underline{ex} : Watershed transform
 - ex: Random Walker
 - ex: Flood Fill
- Many other!

4. Image Segmentation

4.1. histogram-based segmentation

Histogram-based segmentation

 \Rightarrow based on thresholding pixel values

Histogram-based segmentation

- \Rightarrow based on thresholding pixel values
 - global thresholding •

- manual

manual threshold (thresh=0.3)

Histogram-based segmentation

- \Rightarrow based on thresholding pixel values
 - global thresholding
 - manual
 - automatic (e.g. Otsu's method) (threshold calculated to separate pixels into

two classes, minimizing intra-class intensity variance)

automatic threshold (Otsu thresh=0.53)

Histogram-based segmentation

- \Rightarrow based on thresholding pixel values
 - global thresholding
 - manual
 - automatic (e.g. Otsu's method) (threshold calculated to separate pixels into two classes, minimizing intra-class intensity variance)
 - local thresholding (adaptive)

(thresholds calculated based on pixel local neighborhood)

manual threshold (thresh=0.3)

automatic threshold (Otsu thresh=0.53)

local thresholds (blocksize=41, offset=0.1)

Histogram-based segmentation

- \Rightarrow based on thresholding pixel values
 - global thresholding
 - manual
 - automatic (e.g. Otsu's method) (threshold calculated to separate pixels into two classes, minimizing intra-class intensity variance)
 - local thresholding (adaptive)

(thresholds calculated based on pixel local neighborhood)

\Rightarrow based on image gradients

1. compute image gradient magnitude using Sobel filter

- 1. compute image gradient magnitude using Sobel filter
- 2. threshold gradient magnitude to obtain edge map

- 1. compute image gradient magnitude using Sobel filter
- 2. threshold gradient magnitude to obtain edge map
- 3. apply mathematical morphology to fill inner part of the coins and remove objects smaller than a threshold

- 1. compute image gradient magnitude using Sobel filter
- 2. threshold gradient magnitude to obtain edge map
- 3. apply mathematical morphology to fill inner part of the coins and remove objects smaller than a threshold

Region-based segmentation

 \Rightarrow accounts for region properties (pixel-neighborhood)

Popular algorithms:

- Watershed transform
- Flood Fill
- Random Walker

Region-based segmentation

 \Rightarrow accounts for region properties (pixel-neighborhood)

Watershed transform:

- \Rightarrow region-growing approach that fills "basins" in the image
- \Rightarrow the name "watershed" comes from an analogy with hydrology:
 - \rightarrow the watershed transform "floods" a "topographic" representation of the image
 - \rightarrow flooding starts from "<u>markers</u>", in order to determine the catchment basins of these markers

Region-based segmentation

 \Rightarrow accounts for region properties (pixel-neighborhood)

\Rightarrow Watershed transform:

Region-based segmentation

 \Rightarrow accounts for region properties (pixel-neighborhood)

\Rightarrow Watershed transform:

1. build "elevation map" from image gradient amplitude (using the Sobel operator)

Region-based segmentation

 \Rightarrow accounts for region properties (pixel-neighborhood)

⇒ Watershed transform:

- 1. build "elevation map" from image gradient amplitude (using the Sobel operator)
- 2. define markers for background (red) & foreground (white) (here based on the extreme parts of the histogram)

Region-based segmentation

 \Rightarrow accounts for region properties (pixel-neighborhood)

⇒ Watershed transform:

- 1. build "elevation map" from image gradient amplitude (using the Sobel operator)
- 2. define markers for background (red) & foreground (white) (here based on the extreme parts of the histogram)
- 3. apply watershed transform (and colorize segmented elements)

Region-based segmentation

 \Rightarrow accounts for region properties (pixel-neighborhood)

 \Rightarrow Watershed transform:

- 2. Increase the "water level" each time by 1
- 3. Merge all connected pixel with same/less level

4. Image Segmentation
Image Segmentation

The segmented elements can be analysed indidually to:

 \rightarrow provide statistics on their shape, distribution, orientation, etc.

(e.g. fields in a satellite image, crystal/bubble shape distribution in a rock sample, etc.)

The segmented elements can be analysed indidually to:

 \rightarrow provide statistics on their shape, distribution, orientation, etc.

(e.g. fields in a satellite image, crystal/bubble shape distribution in a rock sample, etc.)

1. Introduction

- 2. Mathematical Morphology
- 3. Rank filters
- 4. Image Segmentation
- 5. Exercises

Exercise:

 \Rightarrow analyze a thermal infrared image of a lava lake

 \rightarrow segment the crustal plates from the incandescent cracks and analyze