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1. Introduction

Introduction:

Image transformations:

g(x , y) = T [f (x , y)] where:
• f(x, y) is the input image
• g(x, y) is the output image
• T is an operator

Previous lecture(s):
• point operators

⇒ transform pixel value f(x,y), ignoring surrounding pixels → neighborhood of T=1x1 pixel
⇒ intensity transformation functions (EX: change image contrast with g(x , y) = f (x , y)2)

• local operators
⇒ transform pixel value f(x,y) based on surrounding pixels → neighborhood of T>1x1 pixel
⇒ linear operators (filtering with convolutions), morphological operators (filtering with morphology)

Today’s lecture:
• geometrical operators

⇒ geometrical operators do not change pixel value, instead “move” it to a new position
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2. Homography
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2. Homography

2.1. applications in image processing

Homography is used to transform an image from one projective plane to another
Applications in image processing:

• image stitching (e.g., mosaics and panoramas)
• image registration (e.g., “fuse” datasets in unique coordinate frame)
• image warping (e.g., change image perspective, correct lense distortion, etc.)
• Structure from Motion (SfM) (i.e., 3D reconstruction from multiple images)
• and much more! (e.g., augmented reality, etc.)

Andreas Ley
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2. Homography

2.2. definition

Geometric transformations map points from one space to another:

(x ′, y ′) = f (x , y)

⇒ in linear algebra, linear transformations can be represented by matrix operations:

X ′ = MX (1)
where:

• X =
[

x
y

]
= original pixel coordinates

• X ′ =
[

x ′

y ′

]
= transformed pixel coordinates

• M =
[

a b
c d

]
= transformation matrix
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2. Homography

2.2. definition

The matrix equation: X ′ = MX[
x ′

y ′

]
=

[
a b
c d

] [
x
y

]
Can we written as a linear system of equations:{

x ′ = ax + by
y ′ = cx + dy

Reminder: matrix multiplication

a b
c d

x'
y'

x
ya*

x
+
b*
y

n cols

n 
ro

w
sThe transformation matrix M will determine the type of

geometric transformation.
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2. Homography

2.2. definition

Example 1: scale points?

scaling

{
x ′ = sx ∗ x
y ′ = sy ∗ y

M =
[
sx 0
0 sy

]

⇒ the point with coordinates
[

x
y

]
is transformed to coordinates

[
x ′

y ′

]
using the matrix multiplication:[

x ′

y ′

]
=

[
sx 0
0 sy

] [
x
y

]
=

[
sx ∗ x
sy ∗ y

]
⇒ in Python this translates as:

import numpy as np
X = np.array([1, 1]).T # original coordinates (x, y)
sx, sy = 2, 2 # scaling factors
M = np.array([[sx,0], [sy,2]]) # transformation matrix
X_prime = M @ X # transformed coordinates (x', y') from matrix multiplication
# returns: X_prime = array([2, 2])
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2. Homography

2.2. definition

Example 2: translate points?

translation

{
x ′ = x + tx

y ′ = y + ty
M =

[
?

]

⇒ add a component to the coordinates: redefine X =
[

x
y

]
as X =

[x
y
1

]
= “augmented vector”

⇒ the transformation matrix to translate can now be defined as: M =

[1 0 tx
0 1 ty
0 0 1

]
⇒ hence the transformation coordinates can be calculated from:[

x′

y′

1

]
=

[
1 0 tx
0 1 ty
0 0 1

][
x
y
1

]
=

[
1x + 0y + 1tx
0x + 1y + 1ty
0x + 0y + 1

]
=

[
x + tx
y + ty

]
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2. Homography

2.2. definition

Homogeneous & Heterogeneous coordinates
• heterogeneous coordinates (a.k.a. Cartesian, Euclidean)

⇒ coordinates used to represent points in the regular Euclidean space: [x , y ] in 2D space, [x , y , z] in 3D space

• homogeneous coordinates
⇒ extension of the heterogeneous coordinates using augmented vectors
⇒ used to represent points in a higher-dimensional space, making transformations (e.g. translation, rotation,
scaling, projection) possible in a consistent mathematical framework

heterogeneous homogeneous
point in 2D

space:
[

x
y

]
→

[
x
y
w

]
point in 3D

space:

[
x
y
z

]
→

x
y
z
w


where w is the “homogeneous coordinate”:

if w = 1: [x, y, 1] represents a point in Cartesian coordinates (x,y)
if w ̸= 1: [x, y, w ] represents a point in a scaled version of Cartesian coordinates

→ actual Cartesian coordinates are obtained by dividing by w: [x/w, y/w ]
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2. Homography

2.2. definition

Example 3: other simple transformations?

rotation
{

x ′ = x ∗ cosθ − y ∗ sinθ

y ′ = x ∗ cosθ + y ∗ sinθ
M =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1


(counter-clockwise rotation from x-axis)

shear
(= skew)

{
x ′ = x + sv ∗ y
y ′ = x ∗ sh + y

M =

 1 sh 0
sv 1 0
0 0 1


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2. Homography

2.2. definition

“Primary” 2D transformations:
Transformation Type Transformation Matrix M Pixel Mapping Equation

Identity
[1 0 0

0 1 0
0 0 1

]
x

′
= x

y
′

= y

Scaling
[sx 0 0

0 sy 0
0 0 1

]
x

′
= sx ∗ x

y
′

= sy ∗ y

Translation
[1 0 tx

0 1 ty
0 0 1

]
x

′
= x + tx

y
′

= y + ty

Rotation
(counter-clockwise about origin)

[
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

]
x

′
= x ∗ cosθ − y ∗ sinθ

y
′

= x ∗ cosθ + y ∗ sinθ

Shear
(a.k.a. Skew)

[ 1 sh 0
sv 1 0
0 0 1

]
x

′
= x + sv ∗ y

y
′

= x ∗ sh + y
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2. Homography

2.2. definition

“Composite” 2D transformations ⇒ concatenation of “primary” transformations

Example: Euclidean transformation (a.k.a. “rigid transform”, or “motion”)
⇒ rotation (transformation 1) followed by a translation (transformation 2)
⇒ the transformation matrix is therefore defined as: M = Mtranslation · Mrotation = transform 2 · transform 1

important: transformation concatenation order is from right to left, think like f (g(x))

M = transform 2 · transform 1
= Mtranslation · Mrotation

=

[
1 0 tx
0 1 ty
0 0 1

]
·

[
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

]
=

[
cosθ −sinθ tx
sinθ cosθ ty

0 0 1

]
M ̸= transformation 1 · transformation 2

̸= Mrotation · Mtranslation

̸=

[
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

]
·

[
1 0 tx
0 1 ty
0 0 1

]
̸=

[
cosθ −sinθ tx cosθ − ty sinθ
sinθ cosθ ty sinθcosθ

0 0 1

]
order matters !
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]
order matters !
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2. Homography

2.2. definition

⇒ in Python this translates as:

import numpy as np

# set rotation transformation matrix
angle = np.deg2rad(45)
R = np.array([

[np.cos(angle), -np.sin(angle), 0],
[np.sin(angle), np.cos(angle), 0],
[0, 0, 1]])

# set translation transformation matrix
tx, ty = 1, .5
T = np.array([

[1, 0, tx],
[0, 1, ty],
[0, 0, 1]])

# set original coordinates
X = np.array([

[0, 0, 1], # point 1 (x,y,w)
[1, 0, 1], # point 2 (x,y,w)
[1, 1, 1], # point 3 (x,y,w)
[0, 1, 1]]) # point 4 (x,y,w)

# get euclidean transformation matrix as (1) rotation followed by (2) translation
M = T @ R

# get transformed coordinates (x', y')
X_prime = M @ X.T
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2. Homography

2.2. definition

“Composite” 2D transformations:

Transformation Type Transformation Matrix M Pixel Mapping Equation

Euclidean transformation
(a.k.a. “rigid transform”, or “motion”)
= rotation → translation

[
cosθ −sinθ tx
sinθ cosθ ty

0 0 1

]
x′ = x ∗ cosθ − y ∗ sinθ + tx
y′ = x ∗ sinθ + y ∗ cosθ + ty

Similarity transformation
= rotation → translation → scale

[
a −b tx
b a ty
0 0 1

]
x′ = s ∗ x ∗ cosθ − s ∗ y ∗ sinθ + tx
y′ = s ∗ x ∗ sinθ + s ∗ y ∗ cosθ + ty

Affine transformation
= similarity → shear

[
a b tx
c d ty
0 0 1

]
x′ = sx ∗ x ∗ cos(θ) − sy ∗ y ∗ sin(θ + shear) + tx
y′ = sx ∗ x ∗ sin(θ) + sy ∗ y ∗ cos(θ + shear) + ty

Projective transformation
(a.k.a. homography)

[
a b c
d e f
g h 1

]
encompasses rotation, scaling, shear and perspective
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2. Homography

2.2. definition

⇒ the homography matrix H has 8 degrees of freedom (DOF):

H =

[H00 H01 H02
H10 H11 H12
H20 H21 1

]

⇒ estimating these parameters is key to transforming from one coordinate system to another

EX1: digital planar rectificationEX2: panorama creation
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2. Homography

2.3. estimating the homography matrix

How do we estimate these 8 parameters?

⇒ the Direct Linear Transformation (DLT) is an algorithm for computing H
• Given: at least n ⩾ 4 point pairs Xi → X ′

i (where Xi = coordinates in image 1, X ′
i = coordinates in image 2)

• Wanted: 3×3 homography matrix H (8 DOF), for which X ′
i = HXi holds

1. Reformulate the general projective transformation into a linear homogeneous equation system
⇒ reformulate X ′ = HX into Ah = 0
⇒ will allow us to solve for the unknowns h using SVD (Singular Value Decomposition)

General projective transformation: X ′ = HX[
x′

y′

w′

]
=

[
H00 H01 H02
H10 H11 H12
H20 H21 1

][
x
y
w

]
Write as linear equation system: {

x′ = H00x + H01y + H02w
y′ = H10x + H11y + H12w
w′ = H20x + H21y + H22w

Convert back from homogeneous to Euclidean coordinates by dividing with w′, and move all terms to the left:

x′

w′
−

H00x + H01y + H02
H20x + H21y + H22

= 0

y′

w′
−

H10x + H11y + H12
H20x + H21y + H22

= 0

47 / 82



2. Homography

2.3. estimating the homography matrix

How do we estimate these 8 parameters?

⇒ the Direct Linear Transformation (DLT) is an algorithm for computing H
• Given: at least n ⩾ 4 point pairs Xi → X ′

i (where Xi = coordinates in image 1, X ′
i = coordinates in image 2)

• Wanted: 3×3 homography matrix H (8 DOF), for which X ′
i = HXi holds

1. Reformulate the general projective transformation into a linear homogeneous equation system
⇒ reformulate X ′ = HX into Ah = 0
⇒ will allow us to solve for the unknowns h using SVD (Singular Value Decomposition)

General projective transformation: X ′ = HX[
x′

y′

w′

]
=

[
H00 H01 H02
H10 H11 H12
H20 H21 1

][
x
y
w

]
Write as linear equation system: {

x′ = H00x + H01y + H02w
y′ = H10x + H11y + H12w
w′ = H20x + H21y + H22w

Convert back from homogeneous to Euclidean coordinates by dividing with w′, and move all terms to the left:

x′

w′
−

H00x + H01y + H02
H20x + H21y + H22

= 0

y′

w′
−

H10x + H11y + H12
H20x + H21y + H22

= 0

48 / 82



2. Homography

2.3. estimating the homography matrix

How do we estimate these 8 parameters?

⇒ the Direct Linear Transformation (DLT) is an algorithm for computing H
• Given: at least n ⩾ 4 point pairs Xi → X ′

i (where Xi = coordinates in image 1, X ′
i = coordinates in image 2)

• Wanted: 3×3 homography matrix H (8 DOF), for which X ′
i = HXi holds

1. Reformulate the general projective transformation into a linear homogeneous equation system
⇒ reformulate X ′ = HX into Ah = 0
⇒ will allow us to solve for the unknowns h using SVD (Singular Value Decomposition)

General projective transformation: X ′ = HX[
x′

y′

w′

]
=

[
H00 H01 H02
H10 H11 H12
H20 H21 1

][
x
y
w

]
Write as linear equation system: {

x′ = H00x + H01y + H02w
y′ = H10x + H11y + H12w
w′ = H20x + H21y + H22w

Convert back from homogeneous to Euclidean coordinates by dividing with w′, and move all terms to the left:

x′

w′
−

H00x + H01y + H02
H20x + H21y + H22

= 0

y′

w′
−

H10x + H11y + H12
H20x + H21y + H22

= 0

49 / 82



2. Homography

2.3. estimating the homography matrix

How do we estimate these 8 parameters?

⇒ the Direct Linear Transformation (DLT) is an algorithm for computing H
• Given: at least n ⩾ 4 point pairs Xi → X ′

i (where Xi = coordinates in image 1, X ′
i = coordinates in image 2)

• Wanted: 3×3 homography matrix H (8 DOF), for which X ′
i = HXi holds

1. Reformulate the general projective transformation into a linear homogeneous equation system
⇒ reformulate X ′ = HX into Ah = 0
⇒ will allow us to solve for the unknowns h using SVD (Singular Value Decomposition)

General projective transformation: X ′ = HX[
x′

y′

w′

]
=

[
H00 H01 H02
H10 H11 H12
H20 H21 1

][
x
y
w

]
Write as linear equation system: {

x′ = H00x + H01y + H02w
y′ = H10x + H11y + H12w
w′ = H20x + H21y + H22w

Convert back from homogeneous to Euclidean coordinates by dividing with w′, and move all terms to the left:

x′

w′
−

H00x + H01y + H02
H20x + H21y + H22

= 0

y′

w′
−

H10x + H11y + H12
H20x + H21y + H22

= 0

50 / 82



2. Homography

2.3. estimating the homography matrix

How do we estimate these 8 parameters?

⇒ the Direct Linear Transformation (DLT) is an algorithm for computing H
• Given: at least n ⩾ 4 point pairs Xi → X ′

i (where Xi = coordinates in image 1, X ′
i = coordinates in image 2)

• Wanted: 3×3 homography matrix H (8 DOF), for which X ′
i = HXi holds

1. Reformulate the general projective transformation into a linear homogeneous equation system
⇒ reformulate X ′ = HX into Ah = 0
⇒ will allow us to solve for the unknowns h using SVD (Singular Value Decomposition)

General projective transformation: X ′ = HX[
x′

y′

w′

]
=

[
H00 H01 H02
H10 H11 H12
H20 H21 1

][
x
y
w

]
Write as linear equation system: {

x′ = H00x + H01y + H02w
y′ = H10x + H11y + H12w
w′ = H20x + H21y + H22w

Convert back from homogeneous to Euclidean coordinates by dividing with w′, and move all terms to the left:

x′

w′
−

H00x + H01y + H02
H20x + H21y + H22

= 0

y′

w′
−

H10x + H11y + H12
H20x + H21y + H22

= 0

51 / 82



2. Homography

2.3. estimating the homography matrix

How do we estimate these 8 parameters?

⇒ the Direct Linear Transformation (DLT) is an algorithm for computing H
• Given: at least n ⩾ 4 point pairs Xi → X ′

i (where Xi = coordinates in image 1, X ′
i = coordinates in image 2)

• Wanted: 3×3 homography matrix H (8 DOF), for which X ′
i = HXi holds

1. Reformulate the general projective transformation into a linear homogeneous equation system
⇒ reformulate X ′ = HX into Ah = 0
⇒ will allow us to solve for the unknowns h using SVD (Singular Value Decomposition)

General projective transformation: X ′ = HX[
x′

y′

w′

]
=

[
H00 H01 H02
H10 H11 H12
H20 H21 1

][
x
y
w

]
Write as linear equation system: {

x′ = H00x + H01y + H02w
y′ = H10x + H11y + H12w
w′ = H20x + H21y + H22w

Convert back from homogeneous to Euclidean coordinates by dividing with w′, and move all terms to the left:

x′

w′
−

H00x + H01y + H02
H20x + H21y + H22

= 0

y′

w′
−

H10x + H11y + H12
H20x + H21y + H22

= 0

52 / 82



2. Homography

2.3. estimating the homography matrix

1. (continued)
Multiplying by the denominator (H20x + H21y + H22) yields:

x′

w′
(H20x + H21y + H22) − H00x − H01y − H02 = 0

y′

w′
(H20x + H21y + H22) − H10x − H11y − H12 = 0

Which can be written as the system:[
−x −y −1 0 0 0 x′x

w′
x′y
w′

x′
w′

0 0 0 −x −y −1 y′x
w′

y′y
w′

y′
w′

]
H00
H01

...
H21
H22

 = 0

We now have to solve the homogeneous set of linear equations:
Ah = 0

where:
• A is the “design matrix”, in which each point pair n fills 2 rows (2 observations per point: x and y coordinates) ⇒ shape = 2n × 9

NB: (x1, y1) and (x′
1, y′

1) refer to coordinates of the point pair #1, in image 1 and 2 respectively

A =

−x1 −y1 −1 0 0 0
x′
1x1
w′

x′
1y1
w′

x′
1

w′

0 0 0 −x1 −y1 −1
y′
1x1
w′

y′
1y1
w′

y′
1

w′
...

...
...

...


• h is the vector of unknowns: h =

[
H00 H01 H02 H10 H11 H12 H20 H21 H22

]T
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2. Homography

2.3. estimating the homography matrix

2. Solve the homogeneous equation system with Singular Value Decomposition (SVD)

Note: SVD is generally used for finding solutions of over-determined systems.

The “singular value decomposition” of matrix A is a factorization of the form:

A = UDV T

where:
- the diagonal elements of D (arranged to be non-negative and in decreasing order of magnitude), are called singular values
- the matrices U and V are called left and right singular vectors respectively

⇒ the least squares solution is found as the last row of the matrix V of the SVD

⇒ this translate in Python as:

import numpy as np
U,S,V = np.linalg.svd(A) # singular value decomposition of A
h = V[8] # least squares solution found as the last row of V
H = h.reshape((3,3)) # reshape into 3x3 homography matrix
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2. Homography

2.3. estimating the homography matrix

3. Conditioning & Unconditioning of points
In order to stabilize the solution, once the points are selected, they need to be conditioned (i.e. before creating the design matrix A and solving for H)

⇒ the points are conditioned so that they have zero mean and unit standard deviation:
• zero mean ⇒ the centroid of the points is at the origin (0,0)
• unit standard deviation ⇒ standard deviation (spread) of points is equal to 1 (achieved by subtracting the mean and dividing by the std. dev.)

⇒ can be done with the “conditioning matrix” C (consisting of scaling & translation to origin):

C =

[
s 0 tx
0 s ty
0 0 1

]
where: s = 1

max([stdx ,stdy ]) , tx = −meanx
max([stdx ,stdy ]) , and ty = −meany

max([stdx ,stdy ])

⇒ a condition matrix is constructed for each image, and conditioned coordinates are then calculated as: X̃ = C1X and X̃ ′ = C2X ′
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⇒ the points are conditioned so that they have zero mean and unit standard deviation:
• zero mean ⇒ the centroid of the points is at the origin (0,0)
• unit standard deviation ⇒ standard deviation (spread) of points is equal to 1 (achieved by subtracting the mean and dividing by the std. dev.)

⇒ can be done with the “conditioning matrix” C (consisting of scaling & translation to origin):

C =

[
s 0 tx
0 s ty
0 0 1

]
where: s = 1

max([stdx ,stdy ]) , tx = −meanx
max([stdx ,stdy ]) , and ty = −meany

max([stdx ,stdy ])
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2. Homography

2.3. estimating the homography matrix

3. (continued)

The solved H matrix is in conditioned coordinates, so it must be “deconditioned” before it can be used:

⇒ conditioned homography matrix: H̃ =

[
H̃00 H̃01 H̃02
H̃10 H̃11 H̃12
H̃20 H̃21 H̃22

]
⇒ unconditioned homography matrix can be calculated as: H = C−1

2 H̃C1 =

[
H00 H01 H02
H10 H11 H12
H20 H21 H̃22

]
Lastly, H is normalized by the last element H22 (“homogeneous coordinate”), and is ready to be used!
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2. Homography

2.4. image warping

Then what?
⇒ applying the transformation matrix H on an image is called warping

Case examples:

1. Projection rectification
⇒ use the estimated homography to change the
projection of an image

2. Panorama stitching
⇒ use the estimated homography(ies) to adapt
image(s) to a central image
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3. Interest Points + RANSAC
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2. Homography
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3. Interest Points + RANSAC

3.1. interest points

We have seen that homographies can be computed directly from corresponding points in two images:

⇒ since a full projective transformation (homography) has 8 degrees of freedom, and since each point
correspondence gives two equations, (one each for the x and y coordinates), ⩾ 4 points correspondences
are needed to compute H

However manually selecting corresponding points is cumbersome and not scalable!

Solution? Identify interest points in image(s)
⇒ provide distinctive image points
⇒ used in tracking (optical flow), object recognition, Structure from Motion

Example of most common interest points:
• Corner Detectors (e.g., Harris, Shi-Tomasi, Förstner, etc.)
• Blob and Ridge Detectors (e.g., LoG, DoG, Hessian, etc.)
• Features: SIFT, HOG, ORB, etc.

we will discuss in more detail about interest points and features during the next lecture
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3. Interest Points + RANSAC

3.2. generate panorama with interest points + RANSAC

Example: Harris corners & ORB features detected automatically in an image
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3. Interest Points + RANSAC

3.2. generate panorama with interest points + RANSAC

How can we use interest points to create panoramas?

1. take images with overlap
2. detect ORB features in both images seperately
3. detect matching features between both images
4. remove outliers with RANSAC (robust iterative regression algorithm, resistant to outliers)

5. estimate homography and warp
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3.2. generate panorama with interest points + RANSAC

How can we use interest points to create panoramas?
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3. detect matching features between both images
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3. Interest Points + RANSAC

3.2. generate panorama with interest points + RANSAC

Exercises !
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