UNAM - Posgrado en Ciencias de la Tierra - Semestre 20

Lecture 03
Image Filtering

2024-08-28
Sébastien Valade

VNIVER4DAD NACJONAL
AVFNMA DE
MEXICO

1/73

1. Introduction

1. Introduction

2/73

1. Introduction
Introduction
The image transformations discussed so far are based on the expression:

g(x,y) = Tlf(x,y)]
where:
® f(x, y) is an input image
® g(x, y) is the output image

® T is an operator on f defined over a neighborhood of point (x, y)

3/73

1. Introduction

Introduction

The image transformations discussed so far are based on the expression:

g(x,y) = T[f(x,y)]
where:

® f(x, y) is an input image

® g(x, y) is the output image

® T is an operator on f defined over a neighborhood of point (x, y)

Previous lecture:

= the operator T was applied to individual pixels (“Point Operations”), i.e. neighborhood = 1x1 pix
= the function is an intensity transformation function, to change image contrast, etc.

identity inverse square root 90x,y) = fix,y)?

4/73

1. Introduction
Introduction

Today: filtering!

= Purpose: blur, sharpen, remove noise, filter frequencies, etc.

5/73

1. Introduction
Introduction

Today: filtering!

= Purpose: blur, sharpen, remove noise, filter frequencies, etc.

= Approaches:

1. spatial domain filtering

® the neighborhood is >1 pixel (“Point Processing” — “Neighborhood Processing”)

® spatial filtering modifies an image by replacing the value of each pixel by a function of the values of
the pixel and its neighbors

® if the operation performed on the image pixels is linear, then the filter is called a linear spatial filter

® gpatial filters are applied by convolution

6/73

1. Introduction
Introduction

Today: filtering!

= Purpose: blur, sharpen, remove noise, filter frequencies, etc.

= Approaches:

1. spatial domain filtering

® the neighborhood is >1 pixel (“Point Processing” — “Neighborhood Processing”)

® spatial filtering modifies an image by replacing the value of each pixel by a function of the values of
the pixel and its neighbors

® if the operation performed on the image pixels is linear, then the filter is called a linear spatial filter

® gpatial filters are applied by convolution

2. frequency domain filtering

® the 2D direct Fourier transform is applied to extract image frequencies
® the amplitude spectrum can be band-passed to filter certain frequencies
® the inverse 2D direct Fourier transform is used to reconstruct the filtered image

7/73

2. Spatial domain filtering

2. Spatial domain filtering

8/73

2. Spatial domain filtering
2.1. linear spatial filter
Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w

9/73

2. Spatial domain filtering
2.1. linear spatial filter
Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w

® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

10/73

2. Spatial domain filtering
2.1. linear spatial filter
Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w

® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

® kernel coefficients define the nature of the filter

11/73

2. Spatial domain filtering
2.1. linear spatial filter

Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w

® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

® kernel coefficients define the nature of the filter

KERNEL
AlB|cC |
D|E|F
G|H|I
a b c
d|e|f # R
g h i
input image output image

R=A*a+B*b+..+H*h+"

12/73

2. Spatial domain filtering
2.1. linear spatial filter
Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w

® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

® kernel coefficients define the nature of the filter

KERNEL
119 [1/9 [1/9 |
1/9 |19 | 1/9
19|19 | 1/9
100 | 5 |200
30 | 25 | 10 # 70
|50 |20 | 10
input image output image

R =1/9*100 + 1/9*5 + ... + 1/9*20 + 1/9*10
R=70

13/73

2. Spatial domain filtering
2.1. linear spatial filter
Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w

® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

® kernel coefficients define the nature of the filter

KERNEL w(s.{)
t

ftxy) # gty

input image output image
a b
glz,y) =3 Y wlst)- flz—sy—t)

s=—at=—b

where o and b define an odd-shape kemel size (m=2a+1, n=20+1)

14/73

2. Spatial domain filtering

2.1. linear spatial filter

Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w
® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

® kernel coefficients define the nature of the filter

= kernel slides across the input image to produce a filtered output image g(x,y)
® stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

19 170 |19 |

19 (1/9(1/9

19 (1/9(1/9

input image f(x,y) output image g(x.y)

15/73

2. Spatial domain filtering

2.1. linear spatial filter

Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w
® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

® kernel coefficients define the nature of the filter

= kernel slides across the input image to produce a filtered output image g(x,y)
® stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

119119170 | ™

19 11/9 [1/9

19 11/9 [1/9

input image f(x,y) output image g(x.y)

16/73

2. Spatial domain filtering

2.1. linear spatial filter

Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w
® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

® kernel coefficients define the nature of the filter

= kernel slides across the input image to produce a filtered output image g(x,y)
® stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

109|100 | 119 |

19 119 [1/9

19119 (1/9

input image f(x,y) output image g(x.y)

17/73

2. Spatial domain filtering

2.1. linear spatial filter

Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w
® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

® kernel coefficients define the nature of the filter

= kernel slides across the input image to produce a filtered output image g(x,y)
® stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

19 |1/ |10 |

19 (1/9{1/9

19 (1/9{1/9

input image f(x,y) output image g(x.y)

18/73

2. Spatial domain filtering

2.1. linear spatial filter

Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w
® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

® kernel coefficients define the nature of the filter

= kernel slides across the input image to produce a filtered output image g(x,y)
® stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

109|179 | 119 | ™

19 11/9 [1/9

19 11/9 [1/9

input image f(x,y) output image g(x.y)

19/73

2. Spatial domain filtering

2.1. linear spatial filter

Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w
® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

® kernel coefficients define the nature of the filter

= kernel slides across the input image to produce a filtered output image g(x,y)
® stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

109 |1/ [119 |

19 (19 (179

19 (119 (179

input image f(x,y) output image g(x.y)

20/73

2. Spatial domain filtering

2.1. linear spatial filter

Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w
® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

® kernel coefficients define the nature of the filter

= kernel slides across the input image to produce a filtered output image g(x,y)
® stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

119119170 | ™

19 [1/9 [1/9

19 [1/9 [1/9

input image f(x,y) output image g(x.y)

21/73

2. Spatial domain filtering

2.1. linear spatial filter

Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w
® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

® kernel coefficients define the nature of the filter

= kernel slides across the input image to produce a filtered output image g(x,y)
® stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

19 | 179 [119 | ™,

119 (1/9(1/9

19 (1/9(1/9

input image f(x,y) output image g(x.y)

22/73

2. Spatial domain filtering

2.1. linear spatial filter

Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w
® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

® kernel coefficients define the nature of the filter

= kernel slides across the input image to produce a filtered output image g(x,y)
® stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

119 [179 | 170 [.

19 11/9 | 1/9

1/9 11/9 | 1/9

input image f(x,y) output image g(x.y)

23/73

2. Spatial domain filtering

2.1. linear spatial filter

Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w
® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

® kernel coefficients define the nature of the filter

= kernel slides across the input image to produce a filtered output image g(x,y)
® stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

119 [1/9] 179 | ™,

19 11/9 (1/9

119 11/9 (179

input image f(x,y) output image g(x.y)

24/73

2. Spatial domain filtering

2.1. linear spatial filter

Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w
® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

® kernel coefficients define the nature of the filter

= kernel slides across the input image to produce a filtered output image g(x,y)
® stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

19109 [119 | ™.

119 (1/9(1/9

19 (1/9{1/9

input image f(x,y) output image g(x.y)

25/73

2. Spatial domain filtering

2.1. linear spatial filter

Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w
® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

® kernel coefficients define the nature of the filter

= kernel slides across the input image to produce a filtered output image g(x,y)
® stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

119 [179 | 179 ™,

1/911/9 [1/9

1/911/9 [1/9

input image f(x,y) output image g(x.y)

26 /73

2. Spatial domain filtering

2.1. linear spatial filter

Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w
® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

® kernel coefficients define the nature of the filter

= kernel slides across the input image to produce a filtered output image g(x,y)
® stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

119 {119 [179 | ™

19 (1/9(1/9

19 (1/9(1/9

input image f(x,y) output image g(x.y)

27/73

2. Spatial domain filtering

2.1. linear spatial filter

Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w
® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

® kernel coefficients define the nature of the filter

= kernel slides across the input image to produce a filtered output image g(x,y)
® stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

® padding = pad the image so the kernel can also operate on the edges (pad_size=kernel_size//2)

KERNEL

o
o

ociocioio
ociocioio

o
o

0:{0:0:0:0:0:0:0:0

original image

padded image (zero-padding)

28/73

2. Spatial domain filtering

2.1. linear spatial filter

Linear spatial filter

= sum-of-products operation between an input image f(x,y) and a filter kernel w
® kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)

® kernel coefficients define the nature of the filter

= kernel slides across the input image to produce a filtered output image g(x,y)
® stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

® padding = pad the image so the kernel can also operate on the edges (pad_size=kernel_size//2)

various padding types (Richard Szeliski, 2010)

ZETO

mirror

29/73

2. Spatial domain filtering
2.2. convolutions

Linear spatial filter

= the sum-of-products operation between the input image f(x, y) and filter kernel w (eq.1)
is the implementation of a spatial convolution (eq.2):

a b
glx.y)= > > wist) f(x—s,y—1) (1)

s=—at=—b

g = wxf (2)

30/73

2. Spatial domain filtering

2.2. convolutions

Linear spatial filter

= the sum-of-products operation between the input image f(x, y) and filter kernel w (eq.1)
is the implementation of a spatial convolution (eq.2):

a b
glx.y)= > > wist) f(x—s,y—1) (1)

s=—at=-—b
g = wxf (2)
linear spatial filtering <= spatial convolution]

31/73

2. Spatial domain filtering

2.2. convolutions

Linear spatial filter

= the sum-of-products operation between the input image f(x, y) and filter kernel w (eq.1)
is the implementation of a spatial convolution (eq.2):

a b
glx.y)= > > wist) f(x—s,y—1) (1)

s=—at=—b>b
g = wxf (2)
linear spatial filtering <= spatial convolution]
[convolutions are the core operations used by Convolutional Neural Networks (CNN)]

32/73

2. Spatial domain filtering
2.3. kernels types and applications
Kernel coefficients define the nature of the filter
= vary kernels coefficients according to the desired filtering operation:

33/73

2. Spatial domain filtering
2.3. kernels types and applications
Kernel coefficients define the nature of the filter
= vary kernels coefficients according to the desired filtering operation:

® smoothing filters
= low-pass filters — retains low-frequency components of the image

- averaging kernel (a.k.a. box filter)
- gaussian kernel

34/73

2. Spatial domain filtering
2.3. kernels types and applications
Kernel coefficients define the nature of the filter
= vary kernels coefficients according to the desired filtering operation:

® smoothing filters

= low-pass filters — retains low-frequency components of the image

- averaging kernel (a.k.a. box filter)
- gaussian kernel

® sharpening filters

= high-pass filters — retains high-frequency components of the image
= edge detection filters:

- Sobel kernel, Prewitt kernel, etc. — directional filters (sensitive to edge orientation)
- Laplacian kernel — isotropic filter (not sensitive to edge orientation)

= sharpening filters: increase image contrast along edges

35/73

2. Spatial domain filtering
2.3. kernels types and applications
Kernel coefficients define the nature of the filter
= vary kernels coefficients according to the desired filtering operation:

® smoothing filters
= low-pass filters — retains low-frequency components of the image

- averaging kernel (a.k.a. box filter)
- gaussian kernel

® sharpening filters

= high-pass filters — retains high-frequency components of the image
= edge detection filters:

- Sobel kernel, Prewitt kernel, etc. — directional filters (sensitive to edge orientation)
- Laplacian kernel — isotropic filter (not sensitive to edge orientation)

= sharpening filters: increase image contrast along edges

® other

- Emboss filter — appearance of the image being “embossed” or elevated from the background

36/73

2. Spatial domain filtering
2.3. kernels types and applications

original image filtered image

identity

37/73

2. Spatial domain filtering
2.3. kernels types and applications

original image filtered image

= no change!

38/73

2. Spatial domain filtering
2.3. kernels types and applications

original image filtered image

average
0.1 0.1 0.1

01 01 0.1

-~J

01 01 0.1

39/73

2. Spatial domain filtering
2.3. kernels types and applications
LOW-PASS FILTER

original image filtered image

average
0.1 0.1 0.1

01 01 0.1

01 01 0.1

unweighted average, a.k.a. box filter
= blurring effect
40/73

2. Spatial domain filtering
2.3. kernels types and applications

original image filtered image

gaussian

0.0.0000.0

olol. 0.0 .0

0.0. D oo

0.1 Bl 1|0 ?
00 100

00 000

00 0.0 0|

41/73

2. Spatial domain filtering
2.3. kernels types and applications
LOW-PASS FILTER

original image filtered image

gaussian
000

o|loc|o|o|o|b|o
o o oo olo
o o kiR DD
o o o o olo
o|loc|o|o|le|b|o

weighted average
= blurring effect with more weight on central pixel
42/73

2. Spatial domain filtering
2.3. kernels types and applications

original image filtered image

laplacian

43/73

2. Spatial domain filtering

2.3. kernels types and applications

HIGH-PASS FILTER

original image filtered image

laplacian

(extension of the Laplacian kernel)

= edge detection (no orientation)
44/73

2. Spatial domain filtering
2.3. kernels types and applications

original image filtered image

sharpen

45/73

2. Spatial domain filtering
2.3. kernels types and applications
HIGH-PASS FILTER

original image filtered image

sharpen

identity kernel + highpass kernel
= sharpening effect
46 /73

2. Spatial domain filtering

2.3. kernels types and applications

original image filtered image

sobel x
-1 0 1
. ?
-1 0 1

47/73

. Spatial domain filtering

2.3. kernels types and applications

HIGH-PASS FILTER

original image filtered image

sobel x N
10 1
o |
1 0 1 ’ j
W 4 §

= edge detection (x-direction)

48/73

2. Spatial domain filtering

2.3. kernels types and applications

original image filtered image

49/73

. Spatial domain filtering

2.3. kernels types and applications

HIGH-PASS FILTER

original image filtered image

= edge detection (y-direction)

50/73

2. Spatial domain filtering

2.3. kernels types and applications

original sobel x sobel y sobel mag
1.0 4

0.8 2
0.6 0

0.4 £ 7% 2 -2

02 -4

= edges + magnitude

51/73

2. Spatial domain filtering
2.3. kernels types and applications

original image filtered image

= styling effect

52/73

2. Spatial domain filtering

2.3. kernels types and applications

Gaussian filters are a true low-pass filter for the image
= we can retrieve the low-frequency in an image
= we can retrieve the high-frequency in an image by subtracting the low-frequency from the original image

low frequency high frequency reconstructed
original (gaussian) (=original - gaussian) (=low fg + high fq)

53/73

3. Frequency domain filtering

3. Frequency domain filtering

54/73

3. Frequency domain filtering
3.1. 1D Fourier transform

= convolutions for spatial domain filtering is powerful, BUT it has high computational costs

55/73

3. Frequency domain filtering
3.1. 1D Fourier transform

= convolutions for spatial domain filtering is powerful, BUT it has high computational costs

= frequency domain filtering offers computational advantages:

(convolution in the time domain <= multiplication in the frequency domain)

56 /73

3. Frequency domain filtering

3.1. 1D Fourier transform

Fourier theorem: a continuous and periodic function can be approximated as infinite sum of sine- and
cosine-functions

® Forward transform: Time Domain — Frequency Domain

® Inverse transform: Frequency Domain — Time Domain

*
o
-1 Fourier transform depicting frequency components
1
=5 054
0
0.4 4
-1
1
f=iom:
£ 034
0 2
£ o021
-1
0.5
f=20m:
0.1
0.0
“os 0.0 1
2 0 10 20 30 4 50
o Frequency [Hz]
-2
00 05 10 15 2.0 25 3.0

time [s]

57/73

3. Frequency domain filtering
3.2. 2D Fourier transform

Fourier transform on images ?

= an image can also be expressed as the sum of sinusoids of different frequencies and amplitudes

5873

3. Frequency domain filtering

3.2. 2D Fourier transform

Fourier transform on images ?

= an image can also be expressed as the sum of sinusoids of different frequencies and amplitudes

= the appearance of an image depends on the frequencies of its sinusoidal components:

(NB: Fourier transform of a real function is symmetric about the origin; by convention frequency 0 is set at the center of image)
® low frequencies — regions with intensities that vary slowly

® high frequencies — edges and other sharp intensity transitions

log(amplitude) spectrum
(frequency domain)

original image
("time" domain

log(amplitude) spectrum
(frequency domain)

16
1
12
10
s
6
B
2
0

-400 —200 0 200 400

original image
(“time" domain)

-200 -200

—400

3. Frequency domain filtering
3.2. 2D Fourier transform

2D Fourier transform on SYNTH images
= “dots” symmetric about origin in amplitude spectrum
= distance/direction from origin imply frequency in time domain

amplitude spectrum

periodic image

horiz. fq=10.5

0+ 300

100 1 200

200 100
>
0 c

2 300 El 0
e g
&=

400 -100

500 —200

600 - —300

0 200 400 600 800 —400 —300 —200 —100 0 100 200 300 400
pixels frequency

60/73

3. Frequency domain filtering

3.2. 2D Fourier transform

2D Fourier transform on SYNTH images
= “dots” symmetric about origin in amplitude spectrum
= distance/direction from origin imply frequency in time domain
amplitude spectrum

periodic image
horiz. fq=10.5, vert. fgq=10.5

300

200

100

frequency
o

-100

—200

—300
600 800 —400 —300 —200 —-100 © 100 200 300 400

frequency

0 200 400
pixels

61/73

3. Frequency domain filtering

£
=
2
17}
=
I
o
=]
>
7}
=
=
o
(15
(@)
(q\]
>
™

2D Fourier transform on SYNTH images

"

= “dots” symmetric about origin in amplitude spectrum

amplitude spectrum

= distance/direction from origin imply frequency in time domain

g 8 8 ° 8 8 8
M o~ — m m m
| | |

Aouanbay

PEERRRRRRRRRRRRRRIINY
- \bbbbbdbbbbdibbbibibd
< QI
= (ALLLLLLLL LD

fq=

—
el
-
-
-
-
-
-
-
-
-
-
-
-
-
Sl
-
-
-
-
-

P NE

= (LLLRLLLLLLLAAL L AL
.....................

periodic |mage
oriz. f{q=10.5, vert.

........q..»...o.....

100 200 300 400
frequency

o]

—400 —-300 —200 —-100

TNy

spaxid

pixels

62/73

3. Frequency domain filtering

3.2. 2D Fourier transform

2D Fourier transform on REAL images

|F(u,v)|

remove
peaks

Periodic background removed
Credit: A. Zisserman

63/73

3. Frequency domain filtering

3.2. 2D Fourier transform

2D Fourier transform on REAL images

componente DC

|I|||||| Frecuencias verticales bajas
Frecuencias

horizontales F

bajas

Frecuencias
horizontales
altas

Frecuencias verticales altas

Frecuencias diagonales altas

Credit: Alegre et al. 2016

64/73

3. Frequency domain filtering
3.2. 2D Fourier transform
2D Fourier transform on REAL images
= let’s try on our astronaut

original image
("time" domain)

log(amplitude) spectrum
(frequency domain)

400

200

—200

—400

—400 —200 o 200 400

65/73

3. Frequency domain filtering

3.2. 2D Fourier transform

2D Fourier transform on REAL images

= let’s try on our astronaut

original image
("time" domain)

200

-200

-400

log(amplitude) spectrum
(frequency domain)

original image
("time" domain)

log(amplitude) spectrum
(frequency domain)

—200

—400

—-600

—~600 —400 —200 O 200 400

600

66 /73

3. Frequency domain filtering

3.2. 2D Fourier transform

2D Fourier transform on REAL images

= band-pass image frequencies?
® |ow-pass filter — cut off high-frequencies

low-pass filtered
amplitude spectrum

ariginal
amplitude spectrum

400

-200 -200

-400 -400

67/73

3. Frequency domain filtering

3.2. 2D Fourier transform

2D Fourier transform on REAL images

= band-pass image frequencies?
® |ow-pass filter — cut off high-frequencies

® high-pass filter — cut off low-frequencies

high-pass filtered
amplitude spectrum

original

amplitude spectrum

low-pass filtered
amplitude spectrum

ariginal
amplitude spectrum

400 400 400 400
10 10 10

200 8 200 8 200 8 200
6 o 6 o 6 0

-200 -200 -200 -200

-400 -400 -400 -400

68/73

3. Frequency domain filtering

3.2. 2D Fourier transform

2D Fourier transform on REAL images

= image can be reconstructed from band-passed spectra using the 2D inverse Fourier transform (iFFT2)

original image original image amplitude spectrum

FFT
—) *

high-passed spectra

reconstructed image (high-pass filtered)

iFFT

69/73

3. Frequency domain filtering

3.2. 2D Fourier transform

2D Fourier transform on REAL images

= the ideal low-pass filter (LPF) introduces artefacts:
- “ripples” near strong edges in the original image: ringing effect
- related to the sharp cut-off in ideal frequency domain

low-pass filtered image

ringing effect

70/73

3. Frequency domain filtering
3.2. 2D Fourier transform

2D Fourier transform on REAL images

= the ideal low-pass filter (LPF) introduces artefacts:
- “ripples” near strong edges in the original image: ringing effect

- related to the sharp cut-off in ideal frequency domain

frequency domain time domain

"’/

|
o4

o 0

H(u,v) h(-"; 1")

* |deal LPF has significant 'side-lobes' in the time domain

| ’d\)“ 3

71/73

3. Frequency domain filtering
3.3. Butterworth filter

2D Fourier transform on REAL images
= the Butterworth filter offers impulse response without side-lobes in the time domain ideal
— no "“ringing effect”, due to the absence of discontinuity in spectrum
frequency domain time domain

Vv,

° X

hix.y)

H {_u s v)

* Impulse response without side-lobes in the time domain
72/73

3. Frequency domain filtering

3.3. Butterworth filter

2D Fourier transform on REAL images

= the Butterworth filter offers impulse response without side-lobes in the time domain ideal
— no "“ringing effect”, due to the absence of discontinuity in spectrum

ssed-moT |eap|

yuomianng

73/73

	Introduction
	Spatial domain filtering
	linear spatial filter
	convolutions
	kernels types and applications

	Frequency domain filtering
	1D Fourier transform
	2D Fourier transform
	Butterworth filter

