Lecture 03 Image Filtering

2024-08-28

Sébastien Valade

1. [Introduction](#page-1-0)

- 2. [Spatial domain filtering](#page-7-0)
- 3. [Frequency domain filtering](#page-53-0)

Introduction

The image transformations discussed so far are based on the expression:

$$
g(x,y)=\mathcal{T}[f(x,y)]
$$

where:

- $f(x, y)$ is an input image
- $g(x, y)$ is the output image
- T is an operator on f defined over a neighborhood of point (x, y)

Previous lecture:

 \Rightarrow the operator T was applied to individual pixels ("Point Operations"), i.e. neighborhood = 1x1 pix \Rightarrow the function is an intensity transformation function, to change image contrast, etc.

Introduction

The image transformations discussed so far are based on the expression:

$$
g(x,y)=\mathcal{T}[f(x,y)]
$$

where:

- $f(x, y)$ is an input image
- $g(x, y)$ is the output image
- T is an operator on f defined over a neighborhood of point (x, y)

Previous lecture:

 \Rightarrow the operator T was applied to individual pixels ("Point Operations"), i.e. neighborhood = 1x1 pix \Rightarrow the function is an intensity transformation function, to change image contrast, etc.

Today: filtering!

\Rightarrow Purpose: blur, sharpen, remove noise, filter frequencies, etc.

- \Rightarrow Approaches:
	- 1. **spatial domain filtering**
		- the neighborhood is *>*1 pixel ("Point Processing" → "Neighborhood Processing")
		- spatial filtering modifies an image by replacing the value of each pixel by a function of the values of the pixel and its neighbors
		- if the operation performed on the image pixels is linear, then the filter is called a linear spatial filter
		- spatial filters are applied by **convolution**
	- 2. **frequency domain filtering**
		- the **2D direct Fourier transform** is applied to extract image frequencies
		- the amplitude spectrum can be band-passed to filter certain frequencies
		- the inverse 2D direct Fourier transform is used to reconstruct the filtered image

Today: filtering!

 \Rightarrow Purpose: blur, sharpen, remove noise, filter frequencies, etc.

- ⇒ Approaches:
	- 1. **spatial domain filtering**
		- the neighborhood is *>*1 pixel ("Point Processing" → "Neighborhood Processing")
		- spatial filtering modifies an image by replacing the value of each pixel by a function of the values of the pixel and its neighbors
		- if the operation performed on the image pixels is linear, then the filter is called a linear spatial filter
		- spatial filters are applied by **convolution**
	- 2. **frequency domain filtering**
		- the **2D direct Fourier transform** is applied to extract image frequencies
		- the amplitude spectrum can be band-passed to filter certain frequencies
		- the inverse 2D direct Fourier transform is used to reconstruct the filtered image

Today: filtering!

 \Rightarrow Purpose: blur, sharpen, remove noise, filter frequencies, etc.

- \Rightarrow Approaches:
	- 1. **spatial domain filtering**
		- the neighborhood is *>*1 pixel ("Point Processing" → "Neighborhood Processing")
		- spatial filtering modifies an image by replacing the value of each pixel by a function of the values of the pixel and its neighbors
		- if the operation performed on the image pixels is linear, then the filter is called a linear spatial filter
		- spatial filters are applied by **convolution**
	- 2. **frequency domain filtering**
		- the **2D direct Fourier transform** is applied to extract image frequencies
		- the amplitude spectrum can be band-passed to filter certain frequencies
		- the inverse 2D direct Fourier transform is used to reconstruct the filtered image

1. [Introduction](#page-1-0)

2. [Spatial domain filtering](#page-7-0)

- 1. [linear spatial filter](#page-8-0)
- 2. [convolutions](#page-29-0)
- 3. [kernels types and applications](#page-32-0)
- 3. [Frequency domain filtering](#page-53-0)

2.1. linear spatial filter

Linear spatial filter

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

2.1. linear spatial filter

Linear spatial filter

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

2.1. linear spatial filter

Linear spatial filter

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

⇒ sum-of-products operation between an **input image f(x,y)** and a **filter kernel w**

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

KERNEL

 $$

⇒ sum-of-products operation between an **input image f(x,y)** and a **filter kernel w**

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

KERNEL

R = 70

⇒ sum-of-products operation between an **input image f(x,y)** and a **filter kernel w**

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

KERNEL $w(s,t)$

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter
- ⇒ kernel slides across the input image to produce a filtered **output image g(x,y)**
	- stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter
- ⇒ kernel slides across the input image to produce a filtered **output image g(x,y)**
	- stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter
- ⇒ kernel slides across the input image to produce a filtered **output image g(x,y)**
	- stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter
- ⇒ kernel slides across the input image to produce a filtered **output image g(x,y)**
	- stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter
- ⇒ kernel slides across the input image to produce a filtered **output image g(x,y)**
	- stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter
- ⇒ kernel slides across the input image to produce a filtered **output image g(x,y)**
	- stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter
- ⇒ kernel slides across the input image to produce a filtered **output image g(x,y)**
	- stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter
- ⇒ kernel slides across the input image to produce a filtered **output image g(x,y)**
	- stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter
- ⇒ kernel slides across the input image to produce a filtered **output image g(x,y)**
	- stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter
- ⇒ kernel slides across the input image to produce a filtered **output image g(x,y)**
	- stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter
- ⇒ kernel slides across the input image to produce a filtered **output image g(x,y)**
	- stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter
- ⇒ kernel slides across the input image to produce a filtered **output image g(x,y)**
	- stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter
- ⇒ kernel slides across the input image to produce a filtered **output image g(x,y)**
	- stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

⇒ sum-of-products operation between an **input image f(x,y)** and a **filter kernel w**

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter
- ⇒ kernel slides across the input image to produce a filtered **output image g(x,y)**
	- stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)
	- padding $=$ pad the image so the kernel can also operate on the edges (pad size=kernel size//2)

KERNEL

padding_size = kernel_size // 2

⇒ sum-of-products operation between an **input image f(x,y)** and a **filter kernel w**

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter
- ⇒ kernel slides across the input image to produce a filtered **output image g(x,y)**
	- stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)
	- padding $=$ pad the image so the kernel can also operate on the edges ($pad_size=kernel_size//2$)

various padding types (Richard Szeliski, 2010)

wrap

clamp

mirror

2.2. convolutions

Linear spatial filter

 \Rightarrow the sum-of-products operation between the input image $f(x, y)$ and filter kernel w (eq.1) is the implementation of a **spatial convolution** (eq.2):

$$
g(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) \cdot f(x - s, y - t)
$$
(1)

$$
g = w*f
$$
(2)

 \Rightarrow the sum-of-products operation between the input image $f(x, y)$ and filter kernel w (eq.1) is the implementation of a **spatial convolution** (eq.2):

$$
g(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) \cdot f(x - s, y - t)
$$
(1)

$$
g = w*f
$$
(2)

linear spatial filtering ⇐⇒ **spatial convolution**

 \Rightarrow the sum-of-products operation between the input image $f(x, y)$ and filter kernel w (eq.1) is the implementation of a **spatial convolution** (eq.2):

$$
g(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) \cdot f(x - s, y - t)
$$
(1)

$$
g = w*f
$$
(2)

linear spatial filtering ⇐⇒ **spatial convolution**

convolutions are the core operations used by **Convolutional Neural Networks** (CNN)

Kernel coefficients define the nature of the filter

 \Rightarrow vary kernels coefficients according to the desired filtering operation:

- **smoothing** filters
	- \Rightarrow **low-pass** filters \rightarrow retains low-frequency components of the image
		- averaging kernel (a.k.a. box filter)
		- gaussian kernel
- **sharpening** filters
	- \Rightarrow **high-pass** filters \rightarrow retains high-frequency components of the image
	- ⇒ **edge detection** filters:
		- Sobel kernel, Prewitt kernel, etc. \rightarrow directional filters (sensitive to edge orientation)
		- Laplacian kernel \rightarrow isotropic filter (not sensitive to edge orientation)
	- ⇒ **sharpening** filters: increase image contrast along edges
- **other**

- Emboss filter \rightarrow appearance of the image being "embossed" or elevated from the background

Kernel coefficients define the nature of the filter

 \Rightarrow vary kernels coefficients according to the desired filtering operation:

- **smoothing** filters
	- ⇒ **low-pass** filters → retains low-frequency components of the image
		- averaging kernel (a.k.a. box filter)
		- gaussian kernel
- **sharpening** filters
	- \Rightarrow **high-pass** filters \rightarrow retains high-frequency components of the image
	- ⇒ **edge detection** filters:
		- Sobel kernel, Prewitt kernel, etc. \rightarrow directional filters (sensitive to edge orientation)
		- Laplacian kernel \rightarrow isotropic filter (not sensitive to edge orientation)
	- ⇒ **sharpening** filters: increase image contrast along edges
- **other**

- Emboss filter \rightarrow appearance of the image being "embossed" or elevated from the background

Kernel coefficients define the nature of the filter

 \Rightarrow vary kernels coefficients according to the desired filtering operation:

- **smoothing** filters
	- \Rightarrow **low-pass** filters \rightarrow retains low-frequency components of the image
		- averaging kernel (a.k.a. box filter)
		- gaussian kernel
- **sharpening** filters
	- \Rightarrow **high-pass** filters \rightarrow retains high-frequency components of the image
	- ⇒ **edge detection** filters:
		- Sobel kernel, Prewitt kernel, etc. \rightarrow directional filters (sensitive to edge orientation)
		- Laplacian kernel \rightarrow isotropic filter (not sensitive to edge orientation)
	- ⇒ **sharpening** filters: increase image contrast along edges
- **other**
	- Emboss filter \rightarrow appearance of the image being "embossed" or elevated from the background

Kernel coefficients define the nature of the filter

 \Rightarrow vary kernels coefficients according to the desired filtering operation:

- **smoothing** filters
	- ⇒ **low-pass** filters → retains low-frequency components of the image
		- averaging kernel (a.k.a. box filter)
		- gaussian kernel
- **sharpening** filters
	- \Rightarrow **high-pass** filters \rightarrow retains high-frequency components of the image
	- ⇒ **edge detection** filters:
		- Sobel kernel, Prewitt kernel, etc. \rightarrow directional filters (sensitive to edge orientation)
		- Laplacian kernel \rightarrow isotropic filter (not sensitive to edge orientation)
	- ⇒ **sharpening** filters: increase image contrast along edges
- **other**

- Emboss filter \rightarrow appearance of the image being "embossed" or elevated from the background
original image

filtered image

original image

filtered image

⇒ no change!

original image

filtered image

LOW-PASS FILTER

original image

filtered image

unweighted average, a.k.a. **box filter** ⇒ blurring effect

original image

filtered image

LOW-PASS FILTER

original image

gaussian

filtered image

weighted average \Rightarrow blurring effect with more weight on central pixel

original image

filtered image

HIGH-PASS FILTER

original image

filtered image

(extension of the Laplacian kernel) \Rightarrow edge detection (no orientation)

original image

filtered image

HIGH-PASS FILTER

original image

filtered image

identity kernel $+$ highpass kernel ⇒ sharpening effect

filtered image

HIGH-PASS FILTER

original image

filtered image

⇒ edge detection (x-direction)

original image

filtered image

HIGH-PASS FILTER

original image

filtered image

⇒ edge detection (y-direction)

 \Rightarrow edges + magnitude

original image

emboss $\overline{0}$ -2 -1 -1 $\mathbf{0}$ $\overline{2}$ filtered image

⇒ styling effect

Gaussian filters are a true low-pass filter for the image

- \Rightarrow we can retrieve the low-frequency in an image
- \Rightarrow we can retrieve the high-frequency in an image by subtracting the low-frequency from the original image

1. [Introduction](#page-1-0)

2. [Spatial domain filtering](#page-7-0)

3. [Frequency domain filtering](#page-53-0)

- 1. [1D Fourier transform](#page-54-0)
- 2. [2D Fourier transform](#page-57-0)
- 3. [Butterworth filter](#page-71-0)

⇒ convolutions for **spatial domain filtering** is powerful, BUT it has high computational costs

⇒ **frequency domain filtering** offers computational advantages:

(**convolution** in the time domain ⇐⇒ **multiplication** in the frequency domain)

⇒ convolutions for **spatial domain filtering** is powerful, BUT it has high computational costs

⇒ **frequency domain filtering** offers computational advantages:

 $(convolution$ in the time domain \iff multiplication in the frequency domain)

3. [Frequency domain filtering](#page-53-0)

3.1. 1D Fourier transform

Fourier theorem: a continuous and periodic function can be approximated as infinite sum of sine- and cosine-functions

- **Forward transform**: Time Domain → Frequency Domain
- **Inverse transform**: Frequency Domain → Time Domain

Fourier transform on images ?

\Rightarrow an image can also be expressed as the sum of sinusoids of different frequencies and amplitudes

- the appearance of an image depends on the frequencies of its sinusoidal components:
	- **low frequencies** → regions with intensities that vary slowly
	- **high frequencies** \rightarrow edges and other sharp intensity transitions

Fourier transform on images ?

- \Rightarrow an image can also be expressed as the sum of sinusoids of different frequencies and amplitudes
- \Rightarrow the appearance of an image depends on the frequencies of its sinusoidal components: (NB: Fourier transform of a real function is symmetric about the origin; by convention frequency 0 is set at the center of image)
	- **low frequencies** \rightarrow regions with intensities that vary slowly
	- **high frequencies** \rightarrow edges and other sharp intensity transitions

2D Fourier transform on SYNTH images

- \Rightarrow "dots" symmetric about origin in amplitude spectrum
- \Rightarrow distance/direction from origin imply frequency in time domain

2D Fourier transform on SYNTH images

- \Rightarrow "dots" symmetric about origin in amplitude spectrum
- \Rightarrow distance/direction from origin imply frequency in time domain

2D Fourier transform on SYNTH images

- ⇒ "dots" symmetric about origin in amplitude spectrum
- \Rightarrow distance/direction from origin imply frequency in time domain

2D Fourier transform on REAL images

Credit: A. Zisserman

2D Fourier transform on REAL images

Credit: Alegre et al. 2016 64/73

2D Fourier transform on REAL images

⇒ let's try on our astronaut

2D Fourier transform on REAL images

⇒ let's try on our astronaut

2D Fourier transform on REAL images

- \Rightarrow band-pass image frequencies?
	- **low-pass** filter → cut off high-frequencies
	- **high-pass** filter → cut off low-frequencies

2D Fourier transform on REAL images

- \Rightarrow band-pass image frequencies?
	- **low-pass** filter → cut off high-frequencies
	- **high-pass** filter \rightarrow cut off low-frequencies

2D Fourier transform on REAL images

⇒ image can be reconstructed from band-passed spectra using the 2D **inverse Fourier transform** (iFFT2)

2D Fourier transform on REAL images

⇒ the **ideal low-pass filter** (LPF) introduces artefacts:

- "ripples" near strong edges in the original image: **ringing effect**
- related to the sharp cut-off in ideal frequency domain

low-pass filtered image

ringing effect

2D Fourier transform on REAL images

- ⇒ the **ideal low-pass filter** (LPF) introduces artefacts:
	- "ripples" near strong edges in the original image: **ringing effect**
	- related to the sharp cut-off in ideal frequency domain

• Ideal LPF has significant 'side-lobes' in the time domain

3.3. Butterworth filter

2D Fourier transform on REAL images

⇒ the **Butterworth** filter offers impulse response without side-lobes in the time domain ideal \rightarrow no "ringing effect", due to the absence of discontinuity in spectrum

• Impulse response without side-lobes in the time domain
3.3. Butterworth filter

2D Fourier transform on REAL images

⇒ the **Butterworth** filter offers impulse response without side-lobes in the time domain ideal \rightarrow no "ringing effect", due to the absence of discontinuity in spectrum

