Lecture 03 Image Filtering

2024-08-28

Sébastien Valade

1. Introduction

- 2. Spatial domain filtering
- 3. Frequency domain filtering

1.	Introduction

Introduction

The image transformations discussed so far are based on the expression:

$$g(x,y) = T[f(x,y)]$$

where:

- f(x, y) is an input image
- g(x, y) is the output image
- T is an operator on f defined over a neighborhood of point (x, y)

Previous lecture:

 \Rightarrow the operator T was applied to individual pixels ("Point Operations"), i.e. neighborhood = 1x1 pix \Rightarrow the function is an intensity transformation function, to change image contrast, etc.

1	Introduction

Introduction

The image transformations discussed so far are based on the expression:

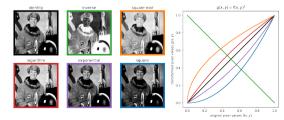
$$g(x,y) = T[f(x,y)]$$

where:

- f(x, y) is an input image
- g(x, y) is the output image
- T is an operator on f defined over a neighborhood of point (x, y)

Previous lecture:

 \Rightarrow the operator T was applied to individual pixels ("Point Operations"), i.e. neighborhood = 1x1 pix \Rightarrow the function is an intensity transformation function, to change image contrast, etc.



Today: filtering!

 \Rightarrow Purpose: blur, sharpen, remove noise, filter frequencies, etc.

- \Rightarrow Approaches:
 - 1. spatial domain filtering
 - the neighborhood is >1 pixel ("Point Processing" \rightarrow "Neighborhood Processing")
 - spatial filtering modifies an image by replacing the value of each pixel by a function of the values of the pixel and its neighbors
 - if the operation performed on the image pixels is linear, then the filter is called a linear spatial filter
 - spatial filters are applied by convolution

2. frequency domain filtering

- the **2D direct Fourier transform** is applied to extract image frequencies
- the amplitude spectrum can be band-passed to filter certain frequencies
- the inverse 2D direct Fourier transform is used to reconstruct the filtered image

Today: filtering!

 \Rightarrow Purpose: blur, sharpen, remove noise, filter frequencies, etc.

- \Rightarrow Approaches:
 - 1. spatial domain filtering
 - the neighborhood is >1 pixel ("Point Processing" \rightarrow "Neighborhood Processing")
 - spatial filtering modifies an image by replacing the value of each pixel by a function of the values of the pixel and its neighbors
 - if the operation performed on the image pixels is linear, then the filter is called a linear spatial filter
 - spatial filters are applied by convolution
 - 2. frequency domain filtering
 - the **<u>2D direct Fourier transform</u>** is applied to extract image frequencies
 - the amplitude spectrum can be band-passed to filter certain frequencies
 - the inverse 2D direct Fourier transform is used to reconstruct the filtered image

Today: filtering!

 \Rightarrow Purpose: blur, sharpen, remove noise, filter frequencies, etc.

- \Rightarrow Approaches:
 - 1. spatial domain filtering
 - the neighborhood is >1 pixel ("Point Processing" \rightarrow "Neighborhood Processing")
 - spatial filtering modifies an image by replacing the value of each pixel by a function of the values of the pixel and its neighbors
 - if the operation performed on the image pixels is linear, then the filter is called a linear spatial filter
 - spatial filters are applied by convolution
 - 2. frequency domain filtering
 - the **<u>2D direct Fourier transform</u>** is applied to extract image frequencies
 - the amplitude spectrum can be band-passed to filter certain frequencies
 - the inverse 2D direct Fourier transform is used to reconstruct the filtered image

1. Introduction

2. Spatial domain filtering

- 1. linear spatial filter
- 2. convolutions
- 3. kernels types and applications
- 3. Frequency domain filtering

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

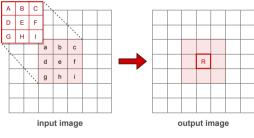
2.1. linear spatial filter

Linear spatial filter

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- <u>kernel coefficients</u> define the nature of the filter

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

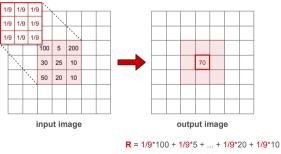


KERNEL

 $\mathbf{R} = \mathbf{A}^*\mathbf{a} + \mathbf{B}^*\mathbf{b} + \dots + \mathbf{H}^*\mathbf{h} + \mathbf{I}^*\mathbf{i}$

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

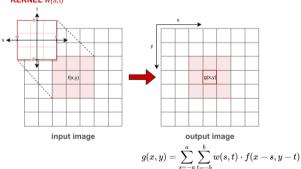
- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter



KERNEL

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

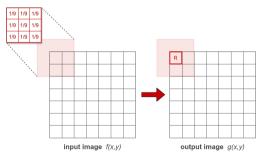
- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)٠
- kernel coefficients define the nature of the filter .



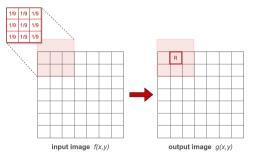
KERNEL w(s,t)

where a and b define an odd-shape kernel size (m=2a+1, n=2b+1)

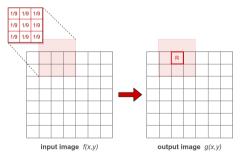
- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- <u>kernel coefficients</u> define the nature of the filter
- \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)
 - <u>stride</u> = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)



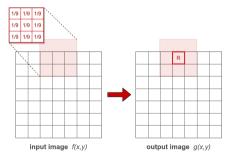
- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- <u>kernel coefficients</u> define the nature of the filter
- \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)
 - <u>stride</u> = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)



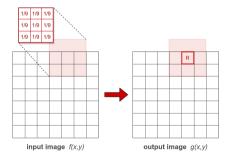
- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- <u>kernel coefficients</u> define the nature of the filter
- \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)
 - <u>stride</u> = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)



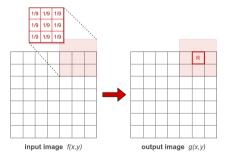
- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- <u>kernel coefficients</u> define the nature of the filter
- \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)
 - <u>stride</u> = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)



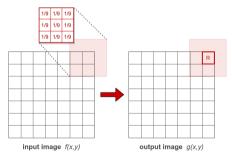
- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- <u>kernel coefficients</u> define the nature of the filter
- \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)
 - <u>stride</u> = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)



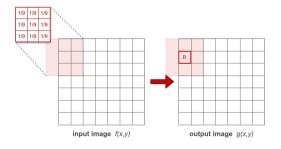
- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- <u>kernel coefficients</u> define the nature of the filter
- \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)
 - <u>stride</u> = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)



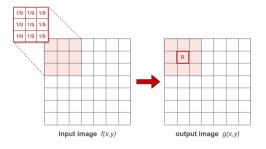
- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- <u>kernel coefficients</u> define the nature of the filter
- \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)
 - <u>stride</u> = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)



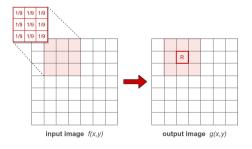
- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- <u>kernel coefficients</u> define the nature of the filter
- \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)
 - <u>stride</u> = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)



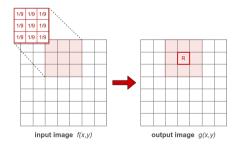
- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- <u>kernel coefficients</u> define the nature of the filter
- \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)
 - <u>stride</u> = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)



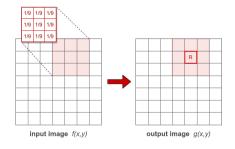
- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- <u>kernel coefficients</u> define the nature of the filter
- \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)
 - <u>stride</u> = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)



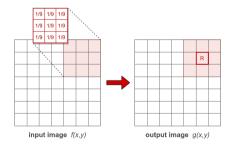
- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- <u>kernel coefficients</u> define the nature of the filter
- \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)
 - <u>stride</u> = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)



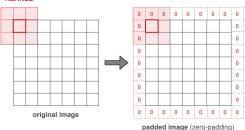
- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- <u>kernel coefficients</u> define the nature of the filter
- \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)
 - <u>stride</u> = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)



- \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w
 - kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
 - <u>kernel coefficients</u> define the nature of the filter
- \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)
 - <u>stride</u> = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)



- \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w
 - kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
 - kernel coefficients define the nature of the filter
- \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)
 - <u>stride</u> = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)
 - padding = pad the image so the kernel can also operate on the edges (pad_size=kernel_size//2)



KERNEL

padding_size = kernel_size // 2

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)٠
- kernel coefficients define the nature of the filter
- \Rightarrow kernel slides across the input image to produce a *filtered* output image g(x,y)
 - stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)
 - padding = pad the image so the kernel can also operate on the edges (pad_size=kernel_size//2)

various padding types (Richard Szeliski, 2010)

zero

wrap

clamp

mirror

 \Rightarrow the sum-of-products operation between the input image f(x, y) and filter kernel w (eq.1) is the implementation of a **spatial convolution** (eq.2):

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) \cdot f(x-s,y-t)$$
(1)
$$g = w * f$$
(2)

 \Rightarrow the sum-of-products operation between the input image f(x, y) and filter kernel w (eq.1) is the implementation of a **spatial convolution** (eq.2):

$$g(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) \cdot f(x - s, y - t)$$
(1)
$$g = w * f$$
(2)

linear spatial filtering \iff spatial convolution

 \Rightarrow the sum-of-products operation between the input image f(x, y) and filter kernel w (eq.1) is the implementation of a **spatial convolution** (eq.2):

$$g(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) \cdot f(x - s, y - t)$$
(1)
$$g = w * f$$
(2)

linear spatial filtering \iff spatial convolution

convolutions are the core operations used by Convolutional Neural Networks (CNN)

 \Rightarrow vary kernels coefficients according to the desired filtering operation:

- smoothing filters
 - \Rightarrow low-pass filters o retains low-frequency components of the image
 - averaging kernel (a.k.a. box filter)
 - gaussian kernel
- sharpening filters
 - \Rightarrow high-pass filters o retains high-frequency components of the image
 - ⇒ edge detection filters:
 - Sobel kernel, Prewitt kernel, etc. ightarrow directional filters (sensitive to edge orientation)
 - Laplacian kernel ightarrow isotropic filter (not sensitive to edge orientation)
 - \Rightarrow sharpening filters: increase image contrast along edges
- other
 - Emboss filter ightarrow appearance of the image being "embossed" or elevated from the background

 \Rightarrow vary kernels coefficients according to the desired filtering operation:

- smoothing filters
 - \rightarrow low-pass filters \rightarrow retains low-frequency components of the image
 - averaging kernel (a.k.a. box filter)
 - gaussian kernel
- sharpening filters
 - \Rightarrow high-pass filters o retains high-frequency components of the image
 - ⇒ edge detection filters:
 - Sobel kernel, Prewitt kernel, etc. ightarrow directional filters (sensitive to edge orientation)
 - Laplacian kernel ightarrow isotropic filter (not sensitive to edge orientation)
 - \Rightarrow sharpening filters: increase image contrast along edges
- other
 - Emboss filter ightarrow appearance of the image being "embossed" or elevated from the background

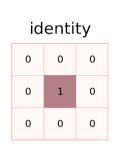
 \Rightarrow vary kernels coefficients according to the desired filtering operation:

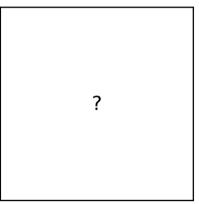
- smoothing filters
 - \Rightarrow low-pass filters \rightarrow retains low-frequency components of the image
 - averaging kernel (a.k.a. box filter)
 - gaussian kernel
- sharpening filters
 - \rightarrow high-pass filters \rightarrow retains high-frequency components of the image
 - \Rightarrow edge detection filters:
 - Sobel kernel, Prewitt kernel, etc. \rightarrow directional filters (sensitive to edge orientation)
 - Laplacian kernel ightarrow isotropic filter (not sensitive to edge orientation)
 - \Rightarrow **sharpening** filters: increase image contrast along edges
- other
 - Emboss filter ightarrow appearance of the image being "embossed" or elevated from the background

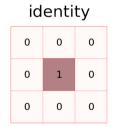
 \Rightarrow vary kernels coefficients according to the desired filtering operation:

- smoothing filters
 - \Rightarrow low-pass filters \rightarrow retains low-frequency components of the image
 - averaging kernel (a.k.a. box filter)
 - gaussian kernel
- sharpening filters
 - \rightarrow high-pass filters \rightarrow retains high-frequency components of the image
 - \Rightarrow edge detection filters:
 - Sobel kernel, Prewitt kernel, etc. \rightarrow directional filters (sensitive to edge orientation)
 - Laplacian kernel ightarrow isotropic filter (not sensitive to edge orientation)
 - \Rightarrow **sharpening** filters: increase image contrast along edges
- <u>other</u>

- Emboss filter \rightarrow appearance of the image being "embossed" or elevated from the background





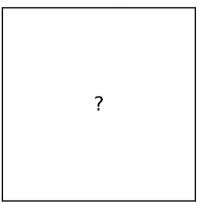


 $\Rightarrow \mathsf{no} \ \mathsf{change!}$

2.3. kernels types and applications

original image

average			
0.1	0.1	0.1	
0.1	0.1	0.1	
0.1	0.1	0.1	



LOW-PASS FILTER

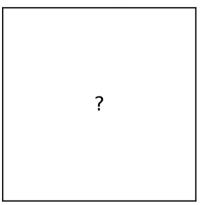
original image

average			
0.1	0.1	0.1	
0.1	0.1	0.1	
0.1	0.1	0.1	

filtered image

unweighted average, a.k.a. <u>box filter</u> \Rightarrow blurring effect

gaussian						
.0	.0	.0	.0	.0	.0	.0
.0	.0	.0	.1	.0	.0	.0
.0	.0	.1	.2	.1	.0	.0
.0	.1	.2	.4	.2	.1	.0
.0	.0	.1	.2	.1	.0	.0
.0	.0	.0	.1	.0	.0	.0
.0	.0	.0	.0	.0	.0	.0



LOW-PASS FILTER

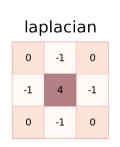
original image

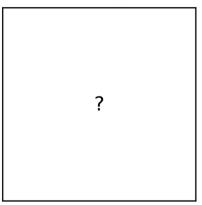
gaussian

.0	.0	.0	.0	.0	.0	.0
.0	.0	.0	.1	.0	.0	.0
.0	.0	.1	.2	.1	.0	.0
.0	.1	.2	.4	.2	.1	.0
.0	.0	.1	.2	.1	.0	.0
.0	.0	.0	.1	.0	.0	.0
.0	.0	.0	.0	.0	.0	.0

filtered image

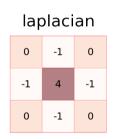
weighted average \Rightarrow blurring effect with more weight on central pixel





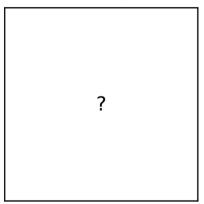
HIGH-PASS FILTER

original image



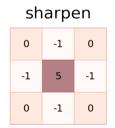
filtered image

(extension of the Laplacian kernel) \Rightarrow edge detection (no orientation)



HIGH-PASS FILTER

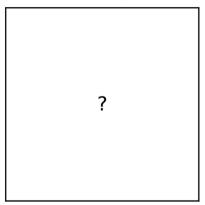
original image



filtered image

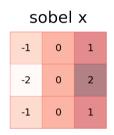
 $\begin{array}{l} \mbox{identity kernel} + \mbox{highpass kernel} \\ \Rightarrow \mbox{sharpening effect} \end{array}$

so	sobel x				
-1	0	1			
-2	0	2			
-1	0	1			

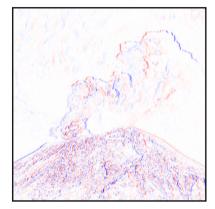


HIGH-PASS FILTER

original image

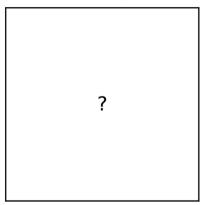


filtered image



 \Rightarrow edge detection (x-direction)

sobel y			
-1	-2	-1	
0	0	0	
1	2	1	

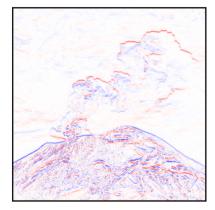


HIGH-PASS FILTER

original image

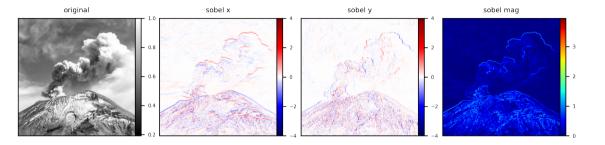
so	sobel y			
-1 -2 -1				
0	0	0		
1	2	1		

filtered image



 \Rightarrow edge detection (y-direction)

2.3. kernels types and applications



 \Rightarrow edges + magnitude

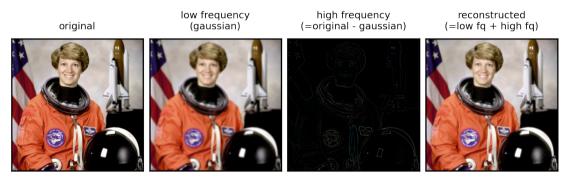
-2 -1 0-1 101 2

filtered image

 $\Rightarrow \mathsf{styling} \ \mathsf{effect}$

Gaussian filters are a true low-pass filter for the image

- \Rightarrow we can retrieve the low-frequency in an image
- \Rightarrow we can retrieve the high-frequency in an image by subtracting the low-frequency from the original image



1. Introduction

2. Spatial domain filtering

3. Frequency domain filtering

- 1. 1D Fourier transform
- 2. 2D Fourier transform
- 3. Butterworth filter

\Rightarrow convolutions for <code>spatial domain filtering</code> is powerful, BUT it has high computational costs

⇒ **frequency domain filtering** offers computational advantages:

($\underline{convolution}$ in the time domain \iff multiplication in the frequency domain)

 \Rightarrow convolutions for spatial domain filtering is powerful, BUT it has high computational costs

 \Rightarrow frequency domain filtering offers computational advantages:

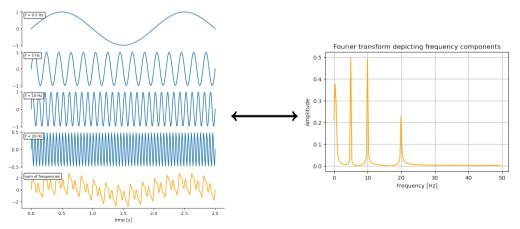
(*convolution* in the time domain \iff *multiplication* in the frequency domain)

3. Frequency domain filtering

3.1. 1D Fourier transform

Fourier theorem: a continuous and periodic function can be approximated as infinite sum of sine- and cosine-functions

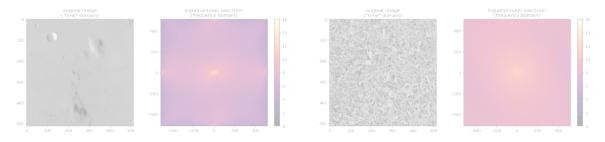
- Forward transform: Time Domain \rightarrow Frequency Domain
- Inverse transform: Frequency Domain \rightarrow Time Domain



Fourier transform on images ?

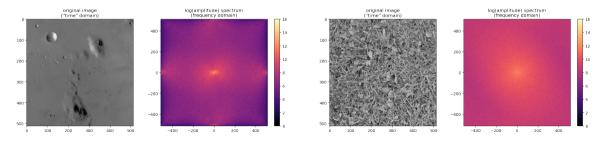
\Rightarrow an image can also be expressed as the sum of sinusoids of different frequencies and amplitudes

- the appearance of an image depends on the frequencies of its sinusoidal components (NB: Fourier transform of a real function is symmetric about the origin; by convention frequency 0 is set at the center of image)
 - low frequencies \rightarrow regions with intensities that vary slowly
 - high frequencies \rightarrow edges and other sharp intensity transitions



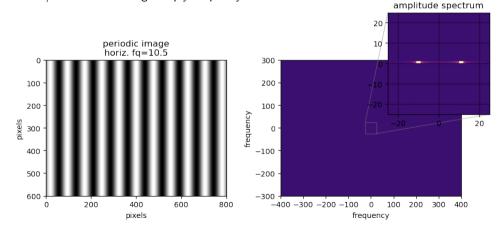
Fourier transform on images ?

- \Rightarrow an image can also be expressed as the sum of sinusoids of different frequencies and amplitudes
- ⇒ the appearance of an image depends on the frequencies of its sinusoidal components: (NB: Fourier transform of a real function is symmetric about the origin; by convention frequency 0 is set at the center of image)
 - low frequencies \rightarrow regions with intensities that vary slowly
 - high frequencies \rightarrow edges and other sharp intensity transitions



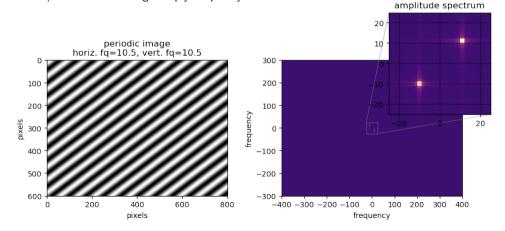
2D Fourier transform on SYNTH images

- \Rightarrow "dots" symmetric about origin in amplitude spectrum
- \Rightarrow distance/direction from origin imply frequency in time domain



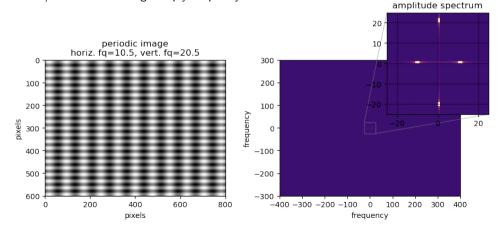
2D Fourier transform on SYNTH images

- \Rightarrow "dots" symmetric about origin in amplitude spectrum
- \Rightarrow distance/direction from origin imply frequency in time domain

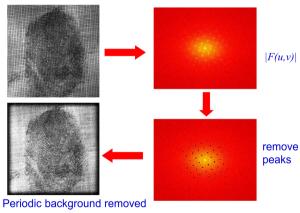


2D Fourier transform on SYNTH images

- \Rightarrow "dots" symmetric about origin in amplitude spectrum
- \Rightarrow distance/direction from origin imply frequency in time domain

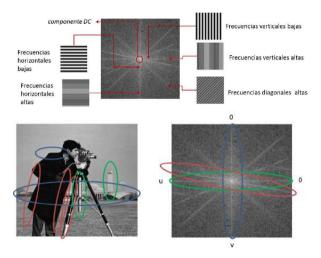


2D Fourier transform on REAL images



Credit: A. Zisserman

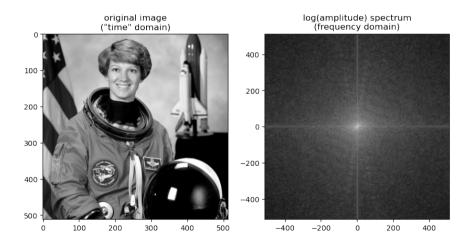
2D Fourier transform on REAL images



Credit: Alegre et al. 2016

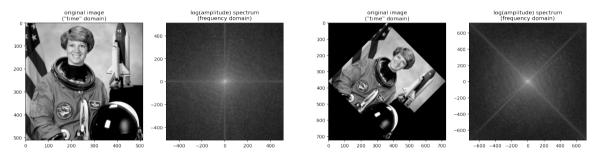
2D Fourier transform on REAL images

 \Rightarrow let's try on our astronaut



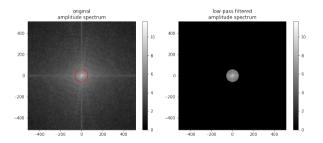
2D Fourier transform on REAL images

\Rightarrow let's try on our astronaut



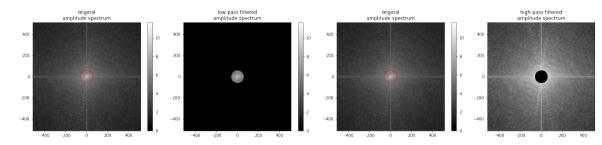
2D Fourier transform on REAL images

- \Rightarrow band-pass image frequencies?
 - **low-pass** filter \rightarrow cut off high-frequencies
 - high-pass filter \rightarrow cut off low-frequencies



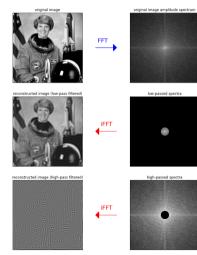
2D Fourier transform on REAL images

- \Rightarrow band-pass image frequencies?
 - **low-pass** filter \rightarrow cut off high-frequencies
 - high-pass filter \rightarrow cut off low-frequencies



2D Fourier transform on REAL images

 \Rightarrow image can be reconstructed from band-passed spectra using the 2D <u>inverse Fourier transform</u> (iFFT2)



2D Fourier transform on REAL images

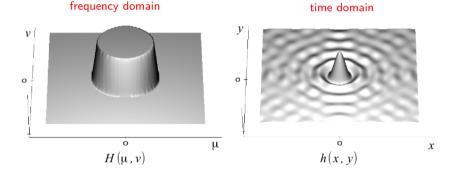
- \Rightarrow the ideal low-pass filter (LPF) introduces artefacts:
 - "ripples" near strong edges in the original image: ringing effect
 - related to the sharp cut-off in ideal frequency domain

low-pass filtered image

ringing effect

2D Fourier transform on REAL images

- \Rightarrow the ideal low-pass filter (LPF) introduces artefacts:
 - "ripples" near strong edges in the original image: ringing effect
 - related to the sharp cut-off in ideal frequency domain



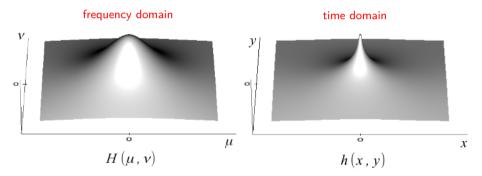
Ideal LPF has significant 'side-lobes' in the time domain

3.3. Butterworth filter

2D Fourier transform on REAL images

 \Rightarrow the **<u>Butterworth</u>** filter offers impulse response without side-lobes in the time domain ideal

 \rightarrow no "ringing effect", due to the absence of discontinuity in spectrum



Impulse response without side-lobes in the time domain

3.3. Butterworth filter

2D Fourier transform on REAL images

 \Rightarrow the **<u>Butterworth</u>** filter offers impulse response without side-lobes in the time domain ideal \rightarrow no "ringing effect", due to the absence of discontinuity in spectrum

