Lecture 13

Deep Learning 03

Roadmap to using DL for your projects

2024-11-19

Sébastien Valade

\\\\\‘lﬂ\&\\\hﬂ NACIONAL AUTONOMA § M[l(/[y
<9 T

ol

VNIVER4DAD NACJONAL
AVFNMA DE
MEXICO

1/56

Table of Contents

1. Define a project
2. Label the data

3. Load & the data
4. Select the model

5. Train and predict

2/56

So far we've used datasets which were already structured for Tensor Flow

= how do we handle our own dataset?

3/56

Table of Contents

1. Define a project

4/56

1. Define a project

Project: classify volcano web-camera images

= ash plume? gas plume? no visibility? night?

5/56

1. Define a project

Project: classify volcano web-camera images

= ash plume? gas plume? no visibility? night?

= | have data and a problem to solve, now what?

6/56

1. Define a project

Project: classify volcano web-camera images

= ash plume? gas plume? no visibility? night?

= | have data and a problem to solve, now what?
label the data

load the data

select the model

Ll

train and evaluate!

7/56

Table of Contents

2. Label the data

8/56

2. Label the data

Label the data

= go through your dataset, and label images from each class

2

9/56

2. Label the data

Label the data

= go through your dataset, and label images from each class
= search for as much variability possible in each class

example: variability in class "0 = no activity

= T 547G e oy

10/56

2. Label the data

Label the data

= go through your dataset, and label images from each class
= search for as much variability possible in each class
= store the file name, label, and any additional information in a file (ex: .csv)

! labels.csv (Editing) %

file_name,DateTimeDigitized, 1abe1
186RECNX/RCNXBB54.JPG, 2818: 8 22
10BRECNX/RCNXB125.
10BRECNX/RCNX8135.
106RECNX/RCNX0405.
10BRECNX/RCNX2205.
18BRECNX/RCNX3005.
10BRECNX/RCNX3015.
1BBRECNX/RCNX3315.
100RECNX/RCNX4645.
18BRECNX/RCNX5455.
18BRECNX/RCNX5655.
10BRECNX/RCNX5765.
10BRECNX/RCNX6155.
100RECNX/RCNX6345.
18BRECNX/RCNX6365.
18BRECNX/RCNX6375.
10BRECNX/RCNX6385.
18BRECNX/RCNX6395.
100RECNX/RCNX6505. 19
lBBRE(NX/RCNXE73S.JPG 2918 ﬂ? 19 H

NB: depending on how your data structured, you can also choose to store images in distinct folders (one for each class)
11/56

2. Label the data

Label the data

= go through your dataset, and label images from each class

= search for as much variability possible in each class

= store the file name, label, and any additional information in a file (ex: .csv)
= check the distribution of vour samples for each class

total = 254

809 9 no activity

= gas plume
70 B ash plume
— [night glow
604 = no visibility
= night

nb. samples

0 1 2 3 4 5
class label

NB: ideally should be equally distributed, but there are ways to overcome this (class weighting)
12/56

Table of Contents

3. Load & the data

13/56

3. Load & the data

Loading the data

= use Tensor Flow's Data API to create and manipulate dataset object

14 /56

3. Load & the data

Loading the data

= use Tensor Flow's Data API to create and manipulate dataset object
= shuffle your data, and split into train, validate, and test datasets

15 /56

3. Load & the data

Loading the data

= use Tensor Flow's Data API to create and manipulate dataset object
= shuffle your data, and split into train, validate, and test datasets
= one way to do that:

Load labels file
df = pd.read_csv("train.csv")

Set indexes for train, test, validation datasets

n = len(df)

idx = np.arange(n) # Create array with n integers

np.random.seed(123) # Set seed to keep same randomization
np.random.shuffle(idx) # Modify sequence in-place by shuffling its contents

train_r, val_r, test_r = 0.8, 0.1, 0.1 # Set ratios for each dataset
idx_for_splitting = [int(n * train_r), int(n * (train_r+val_r))]
train_idx, val_idx, test_idx = np.split(idx, idx_for_splitting)

Create tensor flow data set
file_names = df["file_name"].values
labels = df["label"].values

train_ds_raw = tf.data.Dataset.from_tensor_slices((file_names[train_idx], labels[train_idx]))
val_ds_raw = tf.data.Dataset.from_tensor_slices((file_names[val_idx], labels[val_idx]))

test_ds_raw = tf.data.Dataset.from_tensor_slices((file_names[test_idx], labels[test_idx])) 16 /56

3. Load & the data

Prepare the data

At this stage, the datasets generated are TensorSliceDataset objects, storing filename and label:

for file_name, label in iter(train_ds_raw):
print('-—-"')
print(file_name)
print(label)

Returns:

tf.Tensor(b'104RECNX/RCNX3406.JPG', shape=(), dtype=string)
tf.Tensor (3.0, shape=(), dtype=float6i)
tf. Tensor(b'100RECNX/RCNX6795. JPG", shape=(), dtype=string)
tf.Tensor (2.0, shape=(), dtype=float64)

O R W R W R W

17/56

3. Load & the data

Prepare the data

At this stage, the datasets generated are TensorSliceDataset objects, storing filename and label:

for file_name, label in iter(train_ds_raw):
print('-—-"')
print(file_name)
print(label)

Returns:

tf.Tensor(b'104RECNX/RCNX3406.JPG', shape=(), dtype=string)
tf.Tensor (3.0, shape=(), dtype=float6i)
tf. Tensor(b'100RECNX/RCNX6795. JPG", shape=(), dtype=string)
tf.Tensor (2.0, shape=(), dtype=float64)

O R W R W R W

= we now need to “instruct” which operations these datasets should undergoe during training

18/56

3. Load & the data

Prepare the data

At this stage, the datasets generated are TensorSliceDataset objects, storing filename and label:

for file_name, label in iter(train_ds_raw):
print('-—-"')
print(file_name)
print(label)

Returns:

tf.Tensor(b'104RECNX/RCNX3406.JPG', shape=(), dtype=string)
tf.Tensor (3.0, shape=(), dtype=float6i)
tf. Tensor (b '100RECNX/RCNX6795. JPG', shape=(), dtype=string)
tf.Tensor (2.0, shape=(), dtype=float64)

O R W R W R W

= we now need to “instruct” which operations these datasets should undergoe during training

= dataset objects allow to chain transformations easily: map functions, define batch, etc.

19/56

3. Load & the data

Prepare the data

= chain transformations:

resize_h, resize_w = 130, 230
def preprocess(image_file, label):
Read image

image = tf.io.read_file(path_root + image_file)
image = tf.image.decode_jpeg(image, channels=3) # returns wint8 tensor

Convert to float to prepare for resize
image = tf.image.convert_image_dtype(image, tf.float32)

Resize image (original size/10)

=> returns float [0-1]

resized_image = tf.image.resize(image,
size=(resize_h, resize_w), # (new_height, new width)
preserve_aspect_ratio=True)

Xception preprocess_input:
=> input: floating point with values in range [0, 255] (doc)

=> returns scaled input pizels between -1 and 1 (https://keras.io/api/applications/cception/)

resized_image = tf.multiply(resized_image, 255) # switch to range 0-255

final_image = tf.keras.applications.xception.preprocess_input(resized_image) # not clear how to give inputs (dtype/range)

return final_image, label

batch_size = 32

train_ds = train_ds_raw.shuffle(buffer_size=1000, seed=None) # => at each epoch training will see samples in different order
train_ds = train_ds_raw.map(preprocess).batch(batch_size).prefetch(1)

val_ds = val_ds_raw.map(preprocess) .batch(batch_size) .prefetch(1)

test_ds = test_ds_raw.map(preprocess).batch(batch_size).prefetch(1)

20/56

3. Load & the data

Prepare the data

= chain transformations:

resize_h, resize_w = 130, 230
def preprocess(image_file, label):
Read image

image = tf.io.read_file(path_root + image_file)
image = tf.image.decode_jpeg(image, channels=3) # returns wint8 tensor

Convert to float to prepare for resize
image = tf.image.convert_image_dtype(image, tf.float32)

Resize image (original size/10)

=> returns float [0-1]

resized_image = tf.image.resize(image,
size=(resize_h, resize_w), # (new_height, new width)
preserve_aspect_ratio=True)

Xception preprocess_input:
=> input: floating point with values in range [0, 255] (doc)

=> returns scaled input pizels between -1 and 1 (https://keras.io/api/applications/cception/)

resized_image = tf.multiply(resized_image, 255) # switch to range 0-255

final_image = tf.keras.applications.xception.preprocess_input(resized_image) # not clear how to give inputs (dtype/range)

return final_image, label

batch_size = 32

train_ds = train_ds_raw.shuffle(buffer_size=1000, seed=None) # => at each epoch training will see samples in different order
train_ds = train_ds_raw.map(preprocess).batch(batch_size).prefetch(1)

val_ds = val_ds_raw.map(preprocess) .batch(batch_size) .prefetch(1)

test_ds = test_ds_raw.map(preprocess).batch(batch_size).prefetch(1)

21/56

Table of Contents

4. Select the model

22/56

4. Select the model

Select the model

=- when you have a small amount of labeled data, choose a transfer learning solution

Code from last week exercise:

Load Xception model and define as base model
base_model = tf.keras.applications.xception.Xception(weights="imagenet",
include_top=False,

input_shape=(resize_h, resize_w, 3))
Freeze base layers
for layer in base_model.layers:
layer.trainable = False

Add layers to train classifier
avg = tf.keras.layers.GlobalAveragePooling2D() (base_model.output) # takes base_model ouputs as input
output = tf.keras.layers.Dense(n_classes, activation="softmax")(avg) # takes GlobalAveragePooling2D layer as input

Create final model
model = tf.keras.Model(inputs=base_model.input, outputs=output)

Compile
optimizer = tf.keras.optimizers.Adam(learning rate=0.1)
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])

23/56

Table of Contents

5. Train and predict

24 /56

5. Train and predict

Train

Recall our dataset does not have a uniform class distribution
= we can compensate for that using the class weight option:

Calculate class weights

labels_int = labels.astype('int64')

classO_nb, classl_nb, class2_nb, class3_nb, class4_nb, class5_nb = np.bincount(labels_int)
scaling_factor = n_samples / n_classes

class_weight = {0: (1 / classO_nb) #* scaling_factor,
1: (1 / classl_nb) * scaling_factor,
2: (1 / class2_nb) * scaling_factor,
3: (1 / class3_nb) * scaling_factor,
4: (1 / class4_nb) * scaling_factor,
5: (1 / classb_nb) * scaling_factor
}

Train
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1, update_freq='batch')
history = model.fit(train_ds,

epochs=epochs,

validation_data=val_ds,

callbacks=[tensorboard_callback],

class_weight:class_weight)

25/56

5. Train and predict

Train

= track accuracy of training & validation datasets with TensorBoard:

epoch_accuracy

0.95
0.8 ~
0.65

05 train

0 2 4 6 8 10 12 14 16 18 [O validation

26 /56

5. Train and predict

Train

= track accuracy of training & validation datasets with TensorBoard:

epoch_accuracy

0.95
0.8 ~
0.65
05 train
0 2 4 6 8 10 12 14 16 18 [O validation

NB: there's room for improvement! e.g., more training data, data augmentation, regularization, fine-tuning, etc.

27 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 1 = gas plume

1.0

o
o
L

class probability
o

o
8]
L

0.0 T

=]
S
L

28 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 5 = night

o o
S w
L L

class probability
o

0.0 T T

E
C
B
o
o

=} =}
= [N}
L L

29/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 3 = night glow

N ll

>“OE-
£
=
1] 4
8 0.6
o
<t
o
v 0.4
w
o
(]
0.2 1
0.0 T T T T T
o] 1 2 3 4 5
class

30/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 4 = no visibility

1.0

class probability
o o o
=y o [+

o
8]
L

0.0 T T T

31/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume

N ll

o
o
L

class probability
o

0.0 T T

o =]
8] S
L L
" =-

32/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 5 = night

1.0

o
@
L

4
o
L

o
S
L

class probability

i
i
i
i
i

o
[N}
L

0.0 T T 3 4 T
0 1 2 3 4

33/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 1 = gas plume

1.0

o
o
L

class probability
o

o
8]
L

=]
S
L

0.0 T

34/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume

N ll

o
o
L

class probability
o

0.0 T T

o =]
8] S
L L
" =-

35/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume

N ll

o
o
L

class probability
o

0.0 T T

o =]
8] S
L L
" =-

36/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 0 = no activity

1.0

o
o
L

o =]
8] S
L L

class probability
o

0.0 -

37/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 0 = no activity

=]
o
L

class probability
s 2 ¢
I
|
I
|

o o o
o - N

38/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume

N ll

o
o
L

class probability
o

0.0 T T

o =]
8] S
L L
" =-

39/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 3 = night glow

N ll

>“OE-
£
=
1] 4
8 0.6
o
<t
o
v 0.4
w
o
(]
0.2 1
0.0 T T T T T
o] 1 2 3 4 5
class

40/ 56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume

N ll

o
o
L

class probability
o

0.0 T T

o =]
8] S
L L
" =-

41/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 5 = night

class probability
o o o =] o
N w S w o

o
-
.

|

42/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 0 = no activity

1.0 1

0.8

0.6 1

0.4 1

class probability

0.2 1

0.0 -

c=--

43/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 0 = no activity

1.0

o
o
L

o =]
8] S
L L

class probability
o

0.0 -

44 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 0 = no activity

0.0 -

N ll
CER
h~
%
8 06
o
P
o
v 0.4
v
©
o
. J.
0

45 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 3 = night glow

0.4 1

class probability

46 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume

N ll

o
o
L

class probability
o

0.0 T T

o =]
8] S
L L
" =-

47 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 3 = night glow

N ll

>“OE-
£
=
1] 4
8 0.6
o
<t
o
v 0.4
w
o
(]
0.2 1
0.0 T T T T T
o] 1 2 3 4 5
class

48 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 3 = night glow

N ll

>“OE-
£
=
1] 4
8 0.6
o
<t
o
v 0.4
w
o
(]
0.2 1
0.0 T T T T T
o] 1 2 3 4 5
class

49 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume

0.8

o
o
L

class probability

0.0 T T

o =1
[N S
L L

50 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume

N ll

o
o
L

class probability
o

o =]
8] S
L L
" =-

0.0 T T

51/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume

N ll

o
o
L

class probability
o

0.0 T T

o =]
8] S
L L
" =-

52/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 0 = no activity

1.0

o
o
L

=] =]
N)
N |

° =--

class probability
o

0.0 -

53/56

5. Train and predict

= not bad for such little training dataset and time to train the model

54 /56

5. Train and predict

= not bad for such little training dataset and time to train the model

= but need to increase the number & diversity of the training images to avoid overfitting!

55 /56

5. Train and predict

THE END

(or rather the begining ?7)

56 /56

	Define a project
	Label the data
	Load & the data
	Select the model
	Train and predict

