Visión por computador para las geociencias a.k.a. Computer Vision for Geosciences (CV4GS)

2024-08-08

Sébastien Valade

2. Lecture goals

- 3. Lecture material
- 4. Lecture content
- 5. Points to discuss

Lecturers

Main lecturer:

- Sébastien Valade (valade@igeofisica.unam.mx)
 - \Rightarrow Researcher at UNAM (Instituto de Geofísica, Departamento de Vulcanología)
 - \Rightarrow Volcanologist, research focus on Remote Sensing & Geophysics

Special guest:

• Ronny Hänsch

 \Rightarrow Researcher at DLR (German Aerospace Center) & Professor at TU-Berlin (Germany)

⇒ Computer Scientist, research focus on Computer Vision and Machine Learning applied to Remote Sensing

Lecturers

Main lecturer:

- Sébastien Valade (valade@igeofisica.unam.mx)
 - \Rightarrow Researcher at UNAM (Instituto de Geofísica, Departamento de Vulcanología)
 - \Rightarrow Volcanologist, research focus on Remote Sensing & Geophysics

Special guest:

- Ronny Hänsch
 - \Rightarrow Researcher at DLR (German Aerospace Center) & Professor at TU-Berlin (Germany)
 - \Rightarrow Computer Scientist, research focus on Computer Vision and Machine Learning applied to Remote Sensing

2. Lecture goals

- 3. Lecture material
- 4. Lecture content
- 5. Points to discuss

- acquire theoretical & practical knowledge to process digital images (photographs, satellite imagery, microscope imagery, video, etc.)
- progression from classical computer vision (CV) methods, to advanced artificial intelligence (AI) methods, using the Python programming language
- examples and applications inspired from geoscience problems

- acquire theoretical & practical knowledge to process digital images (photographs, satellite imagery, microscope imagery, video, etc.)
- progression from classical computer vision (CV) methods, to advanced artificial intelligence (AI) methods, using the Python programming language
- examples and applications inspired from geoscience problems

- acquire theoretical & practical knowledge to process digital images (photographs, satellite imagery, microscope imagery, video, etc.)
- progression from classical computer vision (CV) methods, to advanced artificial intelligence (AI) methods, using the Python programming language
- examples and applications inspired from geoscience problems

2. Lecture goals

3. Lecture material

4. Lecture content

5. Points to discuss

- Programming language: Python
- Programming environment: Jupyter notebooks

<u>Note</u>: although the course is built around Python / Jupyter, you can use the programming language and IDE of your choice.

2. Lecture goals

3. Lecture material

4. Lecture content

- 1. Python/Jupyter crash course
- 2. Digital Image Processing
- 3. Machine Learning Methods

5. Points to discuss

1. Crash course to Python

- Introduction to the main features of Python
 - \Rightarrow data types, operators, containers, control flow statements, functions/classes, modules/packages
- Introduction to the programming tools used during the course
 - ⇒ Jupyter notebooks

1. Crash course to Python

- Introduction to the main features of Python
 - \Rightarrow data types, operators, containers, control flow statements, functions/classes, modules/packages
- Introduction to the programming tools used during the course
 - \Rightarrow Jupyter notebooks

• Digital image

 \Rightarrow what is a digital image and how to manipulate it

• Image Filtering

 \Rightarrow spatial- and frequency-domain filering, learn to code a spatial filter & use standard image processing libraries

• Image Morphology & Segmentation

 \Rightarrow erosion, dilation, opening and closing operators; why segment an image and how to do so

- Image Homography
 - \Rightarrow image transformation matrices, image stitching & perspective correction
- Features & Motion Estimation

 \Rightarrow image features, Digital Image Correlation & Optical Flow

- Digital image
 - \Rightarrow what is a digital image and how to manipulate it
- Image Filtering

 \Rightarrow spatial- and frequency-domain filering, learn to code a spatial filter & use standard image processing libraries

• Image Morphology & Segmentation

 \Rightarrow erosion, dilation, opening and closing operators; why segment an image and how to do so

- Image Homography
 - \Rightarrow image transformation matrices, image stitching & perspective correction
- Features & Motion Estimation

 \Rightarrow image features, Digital Image Correlation & Optical Flow

- Digital image
 - \Rightarrow what is a digital image and how to manipulate it
- Image Filtering

 \Rightarrow spatial- and frequency-domain filering, learn to code a spatial filter & use standard image processing libraries

- Image Morphology & Segmentation
 ⇒ erosion, dilation, opening and closing operators; why segment an image and how to do so
- Image Homography
 - \Rightarrow image transformation matrices, image stitching & perspective correction
- Features & Motion Estimation

 \Rightarrow image features, Digital Image Correlation & Optical Flow

- Digital image
 - \Rightarrow what is a digital image and how to manipulate it
- Image Filtering

 \Rightarrow spatial- and frequency-domain filering, learn to code a spatial filter & use standard image processing libraries

• Image Morphology & Segmentation

 \Rightarrow erosion, dilation, opening and closing operators; why segment an image and how to do so

• Image Homography

 \Rightarrow image transformation matrices, image stitching & perspective correction

• Features & Motion Estimation

⇒ image features, Digital Image Correlation & Optical Flow

- Digital image
 - \Rightarrow what is a digital image and how to manipulate it
- Image Filtering

 \Rightarrow spatial- and frequency-domain filering, learn to code a spatial filter & use standard image processing libraries

Image Morphology & Segmentation

 \Rightarrow erosion, dilation, opening and closing operators; why segment an image and how to do so

- Image Homography
 - \Rightarrow image transformation matrices, image stitching & perspective correction
- Features & Motion Estimation

⇒ image features, Digital Image Correlation & Optical Flow

3. Machine Learning Methods

- Introduction to the basic concepts of statistical learning
 - supervised / unsupervised learning
 - input / output domain
 - test / training / validation datasets
 - overfitting / underfitting
 - features and performance evaluation
- Machine Learning
 - Dimensionality reduction (PCA)
 - Regression algorithms (linear, polynomial, logistic, softmax)
 - Classification algorithms (kNN, SVM, RF)
 - ⇒ introduction to Python's Scikit-learn library
- Deep Learning
 - MLP (MultiLayer Perceptron) to CNN (Convolutional Neural Networks)
 - network architectures, transfer learning,
 - \Rightarrow introduction to Python's TensorFlow / Keras library

3. Machine Learning Methods

- Introduction to the basic concepts of statistical learning
 - supervised / unsupervised learning
 - input / output domain
 - test / training / validation datasets
 - overfitting / underfitting
 - features and performance evaluation
- Machine Learning
 - Dimensionality reduction (PCA)
 - Regression algorithms (linear, polynomial, logistic, softmax)
 - Classification algorithms (kNN, SVM, RF)
 - $\Rightarrow\,$ introduction to Python's Scikit-learn library
- Deep Learning
 - MLP (MultiLayer Perceptron) to CNN (Convolutional Neural Networks)
 - network architectures, transfer learning,
 - \Rightarrow introduction to Python's TensorFlow / Keras library

3. Machine Learning Methods

- Introduction to the basic concepts of statistical learning
 - supervised / unsupervised learning
 - input / output domain
 - test / training / validation datasets
 - overfitting / underfitting
 - features and performance evaluation
- Machine Learning
 - Dimensionality reduction (PCA)
 - Regression algorithms (linear, polynomial, logistic, softmax)
 - Classification algorithms (kNN, SVM, RF)
 - $\Rightarrow~$ introduction to Python's Scikit-learn library
- Deep Learning
 - MLP (MultiLayer Perceptron) to CNN (Convolutional Neural Networks)
 - network architectures, transfer learning,
 - $\Rightarrow\,$ introduction to Python's TensorFlow / Keras library

2. Lecture goals

- 3. Lecture material
- 4. Lecture content

5. Points to discuss

• Lectures date/time: Thursdays 09:00-13:00 ?

• Key dates:

- 2024-08-05 = start of semester
- 2024-08-08 = first meeting (today)
- 2024-11-22 = end of semester
- 2024-12-06 = end of exam period
- Evaluation:
 - 3 partial exams, final grade = mean of the 2 best ones
- Experience with Python? With Jupyter notebooks? Personal Computer?
- Why are slides in English? Will some lectures be in English?

- Lectures date/time: Thursdays 09:00-13:00 ?
- Key dates:
 - 2024-08-05 = start of semester
 - 2024-08-08 =first meeting (today)
 - 2024-11-22 = end of semester
 - 2024-12-06 = end of exam period
- Evaluation:

- Experience with Python? With Jupyter notebooks? Personal Computer?
- Why are slides in English? Will some lectures be in English?

- Lectures date/time: Thursdays 09:00-13:00 ?
- Key dates:
 - 2024-08-05 = start of semester
 - 2024-08-08 =first meeting (today)
 - 2024-11-22 = end of semester
 - 2024-12-06 = end of exam period
- Evaluation:

- Experience with Python? With Jupyter notebooks? Personal Computer?
- Why are slides in English? Will some lectures be in English?

- Lectures date/time: Thursdays 09:00-13:00 ?
- Key dates:
 - 2024-08-05 = start of semester
 - 2024-08-08 =first meeting (today)
 - 2024-11-22 = end of semester
 - 2024-12-06 = end of exam period
- Evaluation:

- Experience with Python? With Jupyter notebooks? Personal Computer?
- Why are slides in English? Will some lectures be in English?

- Lectures date/time: Thursdays 09:00-13:00 ?
- Key dates:
 - 2024-08-05 = start of semester
 - 2024-08-08 =first meeting (today)
 - 2024-11-22 = end of semester
 - 2024-12-06 = end of exam period
- Evaluation:

- Experience with Python? With Jupyter notebooks? Personal Computer?
- Why are slides in English? Will some lectures be in English?