Lecture 12 Deep Learning 02 Convolutional Neural Networks

2024-11-19

Sébastien Valade

- 2. How the brain recognizes images
- 3. CNN building blocs
- 4. Transfer learning
- 5. Application

Introduction

Last week: Neural Networks Part-1 (multilayer perceptrons MLP) - DL1

Introduction

Last week: Neural Networks Part-1 (multilayer perceptrons MLP) - DL1 This week: Neural Networks Part-2 (convolutional neural networks CNN) - DL2

1.	Introduction	

Last lecture

 \Rightarrow we trained a fully-connected neural network (MLP) to classify a "simple" dataset

1.	Introduction	

Last lecture

 \Rightarrow this "simple" network with only 2 hidden layers, handling "simple" images (28x28 pixels, 1-channel), and "few classes" (10 classes) has a total of 266 610 parameters to be trained

Layer (type)	Output Shape	Param #
flatten (Flatten)	(None, 784)	Θ
dense (Dense)	(None, 300)	235,500
dense_1 (Dense)	(None, 100)	30,100
dense_2 (Dense)	(None, 10)	1,010

Total params: 266,610 (1.02 MB) Trainable params: 266,610 (1.02 MB) Non-trainable params: 0 (0.00 B)

1.	Introduction	

Last lecture

 \Rightarrow this "simple" network with only 2 hidden layers, handling "simple" images (28x28 pixels, 1-channel), and "few classes" (10 classes) has a total of 266 610 parameters to be trained

Layer (type)	Output Shape	Param #
flatten (<mark>Flatten</mark>)	(None, 784)	0
dense (Dense)	(None, 300)	235,500
dense_1 (Dense)	(None, 100)	30,100
dense_2 (Dense)	(None, 10)	1,010

Total params: 266,610 (1.02 MB) Trainable params: 266,610 (1.02 MB) Non-trainable params: 0 (0.00 B)

- \Rightarrow limits of fully-connected FC networks:
 - 1. hard to scale to larger images or more complex classification tasks

EX: 128×128 RGB image with 1^{st} hidden-layer of 300 neurons = $(128 \times 128 \times 3) \times 300 = >14$ millions parameters

2. spatial structure of images are not respected (2D array flattened to 1D array)

ntrod	luction	

Last lecture

 \Rightarrow this "simple" network with only 2 hidden layers, handling "simple" images (28x28 pixels, 1-channel), and "few classes" (10 classes) has a total of 266 610 parameters to be trained

Layer (type)	Output Shape	Param #
flatten (Flatten)	(None, 784)	0
dense (Dense)	(None, 300)	235,500
dense_1 (Dense)	(None, 100)	30,100
dense_2 (Dense)	(None, 10)	1,010

Total params: 266,610 (1.02 MB) Trainable params: 266,610 (1.02 MB) Non-trainable params: 0 (0.00 B)

- \Rightarrow limits of fully-connected FC networks:
 - 1. hard to scale to larger images or more complex classification tasks

EX: 128×128 RGB image with 1^{st} hidden-layer of 300 neurons = (128*128*3)*300 = >14 millions parameters

- 2. spatial structure of images are not respected (2D array flattened to 1D array)
- \Rightarrow do we *really* need to connect all the pixels together?

would rather need sparse connections: fewer weights, nearby regions related, & far apart regions not related

This lecture: from MLPs to CNNs

2. How the brain recognizes images

- 1. Perception by the visual cortex
- 2. Reproducing brain perception with neural networks

3. CNN building blocs

4. Transfer learning

5. Application

2.1. Perception by the visual cortex

Perception by the visual cortex

- ⇒ Convolutional Neural Networks (CNNs) emerged from the study of the brain's visual cortex
- ⇒ Experiments on cats & monkeys gave insights on how perception works (Hubel & Wiesel 1958¹,1959²,1968³) <u>NB</u>: the authors received the Nobel Prize in Physiology or Medicine in 1981 for their work

source

¹Hubel D. (1959) "Single Unit Activity in Striate Cortex of Unrestrained Cats", The Journal of Physiology

²Hubel D. & Wiesel T. (1959) "Receptive Fields of Single Neurons in the Cat's Striate Cortex", The Journal of Physiology

³Hubel D. & Wiesel T. (1968) "Receptive Fields and Functional Architecture of Monkey Striate Cortex", The Journal of Physiology

2.1. Perception by the visual cortex

Perception by the visual cortex

- \Rightarrow Insights on *how perception works*:
 - 1. biological neurons respond to specific patterns in regions (a.k.a. receptive fields) of the visual field

2.1. Perception by the visual cortex

Perception by the visual cortex

- \Rightarrow Insights on *how perception works*:
 - 1. biological neurons respond to specific patterns in regions (a.k.a. receptive fields) of the visual field
 - 2. the visual cortex is organized in layers: as the visual signal makes its way through consecutive brain modules, neurons respond to more complex patterns in larger receptive fields
 - → neurons in low-level layers have small receptive fields and react to simple patterns (e.g., edges) NB: two neurons may have the same receptive field but react to different line orientations
 - \rightarrow neurons in high-level layers have larger receptive fields and react to more complex patterns that are combinations of the lower-level patterns (e.g., triangles, rectangles, ... \rightarrow e.g., house, face, ...)

from: Géron A. (2022)

- 2. How the brain recognizes images
- 2.2. Reproducing brain perception with neural networks

Fukushima 1980

Reproducing brain perception with neural networks

 \Rightarrow These studies of the visual cortex inspired the **neocognitron** (*Fukushima 1980*⁴), which gradually evolved into what we now call <u>convolutional neural networks CNNs</u>, a.k.a. ConvNets, (LeCun et al. 1998⁵)

⁴Fukushima, K. (1980) "Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position", Biological Cybernetics

⁹LeCun, Y. et al. (1998) "Gradient-Based Learning Applied to Document Recognition", Proceedings of the IEEE 86, no. 11

2. How the brain recognizes images

3. CNN building blocs

- 1. Building blocs (overview)
- 2. Convolutional layer
- 3. Pooling layer
- 4. Flatten layer
- 5. Dropout layer
- 6. Summary (cheat-sheet)

4. Transfer learning

5. Application

3.1. Building blocs (overview)

Building blocs (overview) of a CNN

 \Rightarrow consider 2 milestones CNN architectures: LeNet-5 (LeCun et al. 1998)⁶ and AlexNet (Krizhevsky et al. 2012)⁷

 $^{6}_{-}$ LeCun, Y. et al. (1998) "Gradient-Based Learning Applied to Document Recognition", Proceedings of the IEEE 86, no. 11

⁽Krizhevsky, Alex, et al. (2012) "ImageNet Classification with Deep Convolutional Neural Networks", Proceedings of the 25th NeurIPS Conference

3.1. Building blocs (overview)

Building blocs (overview) of a CNN

 \Rightarrow consider 2 milestones CNN architectures: LeNet-5 (LeCun et al. 1998) and AlexNet (Krizhevsky et al. 2012)

LeNet	AlexNet
Image: 28 (height) × 28 (width) × 1 (channel)	Image: 224 (height) × 224 (wi
	· · · · · · · · · · · · · · · · · · ·
Convolution with 5×5 kernel+2padding:28×28×6	Convolution with 11×11 kernel
sigmoid	V ReL
Pool with 2×2 average kernel+2 stride: 14×14×6	Pool with 3×3 max. kernel+2
	· · · · · · · · · · · · · · · · · · ·
Convolution with 5×5 kernel (no pad):10×10×16	Convolution with 5×5 kernel+
↓ sigmoid	V ReL
Pool with 2×2 average kernel+2 stride: 5×5×16	Pool with 3×3 max.kernel+2
↓ flatten	
Dense: 120 fully connected neurons	Convolution with 3×3 kernel+
↓ sigmoid	V ReL
Dense: 84 fully connected neurons	Convolution with 3×3 kernel+
↓ sigmoid	V ReL
Dense: 10 fully connected neurons	Convolution with 3×3 kernel+
· · · · · · · · · · · · · · · · · · ·	↓ ReL
Output: 1 of 10 classes	Pool with 3×3 max.kernel+
	↓ flatt
	Dense: 4096 fully conne
	↓ ReL
	Dense: 4096 fully conne
	↓ ReL
	Dense: 1000 fully conne

224 (width) × 3 (channels) kernel+4stride:54×54×96 Bel II rnel+2 stride: 26×26×96 kernel+2 pad:26×26×256 **ReLu** nel+2stride:12×12×256 kernel+1 pad:12×12×384 Bel II kernel+1 pad:12×12×384 ReLu ernel+1 pad:12×12×256 Rel II ernel+2stride:5×5×256 connected neurons ReLu, dropout p=0.5 connected neurons ReLu, dropout p=0.5 connected neurons Output: 1 of 1000 classes

- **convolutional layers** \Rightarrow extract features \rightarrow receptive field, filter kernel/depth, feature maps, padding, stride
- pooling layers \Rightarrow downsample \rightarrow pooling kernel, stride
- dense lavers \Rightarrow classify \rightarrow fully connected layers
- activation function \Rightarrow achieve non-linearity → sigmoid. ReLu. ...
- flatten layer ⇒ matrix/tensor to vector
- dropout layer \Rightarrow prevent overfitting (regularization) \rightarrow in the fully connected layers

3.1. Building blocs (overview)

Building blocs (overview) of a CNN

 $\Rightarrow\,$ illustration of the building blocs of convolutional networks

Modified after: Elgendy (2020)

CONV Convolutional layer

 \Rightarrow **<u>convolution</u>**: reminder of *Lecture 03 (filtering)*

Modified after: Elgendy (2020)

- <u>filter kernel</u> = matrix of weights applied to extract features from the input
 - \Rightarrow weights are learned by CNN during training!
 - \Rightarrow hyperparameters to be set:
 - size $(3 \times 3, 5 \times 5, ...)$
 - depth (number of filters)
- **destination pixel** = weighted sum of pixel-values in the receptive field and the filter-weights
- receptive field = area of the image that the filter convolves

CONV Convolutional layer

⇒ **<u>convolution</u>**: reminder of *Lecture 03 (filtering)*

- \Rightarrow The filter slides over the entire image
- <u>stride</u> = sliding step
 ⇒ hyperparameter to be set
- zero-padding = add zeros around the input image to keep output the same size
 ⇒ hyperparameter to be set
- <u>feature map</u> (a.k.a. activation map) = convolved image

CONV Convolutional layer

- $\Rightarrow~$ What's different with respect to Lecture 03?
 - $\rightarrow\,$ in CNNs, the filter weights are randomly initialized and the values are learned by the network
 - $\rightarrow\,$ in doing so, the network learns to extract useful features from the image

CONV Convolutional layer

- \Rightarrow What's different with respect to Lecture 03?
 - $\rightarrow\,$ in CNNs, the filter weights are randomly initialized and the values are learned by the network
 - $\rightarrow\,$ in doing so, the network learns to extract useful features from the image
- $\Rightarrow~$ Example: image modified by 2 possible filters
 - $\rightarrow \frac{vertical \ filter}{(since \ all \ inputs \ in \ the \ receptive \ field \ are \ multiplied \ by \ 0, \ except \ for \ those \ in \ the \ central \ vertical \ line)}$
 - \rightarrow <u>horizontal filter</u> (7×7 matrix of 0s with 1s in central row) \Rightarrow horizontal lines get enhanced

From: Géron (2022)

CONV Convolutional layer

\Rightarrow stacking convolutional layers allows the network to learn progressively learn more complex features

- EX: simplified version of how CNNs learn faces
 - \rightarrow 1st layer learns basic features (lines & edges)
 - $\rightarrow 2^{nd}$ layer assembles those into recognizable shapes (corners & circles)
 - → deeper layers learn more complex shapes such (eyes, ears, etc.)

Modified after: Elgendy (2020)

CONV Convolutional layer

\Rightarrow each convolutional layer usually has ≥ 1 filters!

<u>NB</u>: increasing the number of filters in a hidden convolutional layer of a CNN, is equivalent to increasing the number of neurons in a hidden fully-connected layer of a MLP (3×3 kernel = 9 neurons)

CONV Convolutional layer

\Rightarrow what if we are handling 1 filter, but input image with > 1 channel (e.g. RGB)?

Modified after: Elgendy (2020)

CONV Convolutional layer

\Rightarrow what if we are handling > 1 filter with input image having > 1 channel (e.g. RGB)?

Modified after: Elgendy (2020) See animation at: **stanford.edu**

CONV Convolutional layer

 \Rightarrow the output size of the feature map is determined by the following formula:

<u>EX</u>: input size $W=7\times7$, filter size $F=3\times3$, pad=0, stride $S=1 \Rightarrow$ output size = 5x5

Activation function

- ⇒ similar to what we saw for MLPs, <u>activation functions</u> are used to *introduce non-linearity in the network* <u>NB</u>: a convolutional layer performs a linear operation, so stacking multiple convolutional layers without any activation functions would be equivalent to a single convolutional layer, unable to learn anything complex
- ⇒ most common activation function is **<u>ReLU</u>** (Rectified Linear Unit): $f(x) = \max(0, x)$

<u>NB</u>: ReLU is preferred because of its computational efficiency and its ability to avoid the vanishing gradient problem

Convolutional layer

 \Rightarrow final comments on the advantages of *convolutional layers* with respect to *fully-connected layers*:

 neurons in the first convolutional layer are <u>not connected</u> to every single pixel in the input image, but only to pixels in their receptive fields

 \Rightarrow this allows the network to extract small low-level features in the first hidden layer, then assemble them into larger higher-level features in the next hidden layers

• all neurons in a feature map share the same parameters, which dramatically reduces the number of parameters in the model

 \Rightarrow once the CNN has learned to recognize a pattern in one location, it can recognize it in any other location. In contrast, once a fully connected neural network has learned to recognize a pattern in one location, it can recognize it in that particular location

3.3. Pooling layer

POOL Pooling layer (subsampling)

- $\Rightarrow\,$ increasing the number of convolutional layers increases the number of parameters to be learned
- ⇒ **pooling layers** are used to *reduce (subsample) the spatial dimensions of the feature map* while keeping the most important information. Types of pooling layers: **max pooling** and **average pooling**

<u>EX</u>: 3×3 max pooling filter with stride=3, reducing the feature map from 9×9 to 3×3

3.3. Pooling layer

POOL Pooling layer (subsampling)

- $\Rightarrow\,$ increasing the number of convolutional layers increases the number of parameters to be learned
- ⇒ **pooling layers** are used to *reduce (subsample) the spatial dimensions of the feature map* while keeping the most important information. Types of pooling layers: **max pooling** and **average pooling**

<u>EX</u>: 3×3 max pooling filter with stride=3, reducing the feature map from 9×9 to 3×3

 \Rightarrow changing the stride will change the size of the feature map

3.3. Pooling layer

POOL Pooling layer (subsampling)

⇒ pooling layers reduce image resolution while keeping the image's important features (think of it as an image-compressing program)

<u>NB</u>: <u>stride</u> during convolution also allow to reduce the size of the feature map; many authors have suggested that pooling operations could be removed in favor of adjusting stride/padding in the convolutional layer.

```
3. CNN building blocs
```

3.4. Flatten layer

Flatten layer

 $\Rightarrow~$ Flattening is used to convert an image matrix (2D) or tensor (n-2D) into a vector (1D)

<u>NB</u>: during the flatenning process, the 2D information is entirely lost.

\Rightarrow Where are the flatten layers?

- ightarrow in MLPs, the input image is flattened into a vector and parsed to the FC layers for classification
- → in CNNs, the *feature maps* (learned in the convolutional layers CONV) are flattened, and the feature vector is fed to the FC layers for classification

```
3. CNN building blocs
```

3.4. Flatten layer

Flatten layer

 $\Rightarrow~$ Flattening is used to convert an image matrix (2D) or tensor (n-2D) into a vector (1D)

<u>NB</u>: during the flatenning process, the 2D information is entirely lost.

\Rightarrow Where are the flatten layers?

- ightarrow in MLPs, the input image is flattened into a vector and parsed to the FC layers for classification
- \rightarrow in CNNs, the *feature maps* (learned in the convolutional layers CONV) are flattened, and the feature vector is fed to the FC layers for classification

3.5. Dropout layer

Dropout layer (regularization)

\Rightarrow **Dropout** is a popular regularization technique used to prevent overfitting of deep neural networks

 \rightarrow dropout layers are introduced between the fully connected layers (at the end of the network architecture)

Dropout layer (regularization)

- \Rightarrow **Dropout** is a popular regularization technique used to prevent overfitting of deep neural networks
 - \rightarrow dropout layers are introduced between the fully connected layers (at the end of the network architecture)
 - \rightarrow dropout randomly "turns off" a percentage of neurons (nodes) making up a layer of the network \Rightarrow these neurons are not included in the forward or backward pass

From: Elgendy (2020)

Dropout layer (regularization)

- \Rightarrow **Dropout** is a popular regularization technique used to prevent overfitting of deep neural networks
 - \rightarrow dropout layers are introduced between the fully connected layers (at the end of the network architecture)
 - \rightarrow dropout randomly "turns off" a percentage of neurons (nodes) making up a layer of the network \Rightarrow these neurons are not included in the forward or backward pass

From: Elgendy (2020)

→ this forces all nodes to learn without relying specific nodes (since they can be dropped at any point) ⇒ spreads out the weights among all neurons (avoiding neurons to become too "strong" or too "weak") ⇒ makes the network more resilient (less dependent on specific nodes)

3.6. Summary (cheat-sheet)

Summary (cheat-sheet)

Convolutional layer

📫 1 filter applies a convolution between filter-weights and pixel-values in the receptive field (multiply each pixel by corresponding weight and summing gives the center pixel value in new image)

⇔ convolution layer = K filters

Hyperparameters

- receptive field (F)

= filter size NB: usually an odd number, so that it is centered on a central pixel

- depth (K)

= number of filters NB: depth column = set of neurons that are all looking at the same region of the input

- stride (S)

- = number of pixels the filter slides across the image at each step EX: stride 2 => filter moves 2 pix at a time => produces smaller outputs
- zero-padding (P)
- = pad the input volume with zeros around the border

dropout rate (p)

= percentage of the input units to drop

NB: hyper-parameters control the output volume size:

width & height = ((W-F+2P)/S) + 1 where W = input width/height depth = K

1. Introduction

2. How the brain recognizes images

3. CNN building blocs

4. Transfer learning

- 1. ImageNet & ILSVRC
- 2. Famous CNN architectures
- 3. Transfer learning using pretrained CNNs

5. Application

4.1. ImageNet & ILSVRC

Data is key

- $\Rightarrow\,$ the deeper the network, the more powerful it can be, but the more data it needs to be trained
- ⇒ ImageNet dataset: large-scale image dataset with 1.2 million images and 1,000 classes (ImageNet)
 → Deng, J. et al. (2009) ImageNet: A Large-Scale Hierarchical Image Database. CVPR

4.1. ImageNet & ILSVRC

Data is key

- $\Rightarrow\,$ the deeper the network, the more powerful it can be, but the more data it needs to be trained
- ⇒ ImageNet dataset: large-scale image dataset with 1.2 million images and 1,000 classes (ImageNet)
 → Deng, J. et al. (2009) ImageNet: A Large-Scale Hierarchical Image Database. CVPR

⇒ ILSVRC competition: "ImageNet Large Scale Visual Recognition Competition"

 \rightarrow compitition held between 2010-2017 using ImageNet as benchmark for image classification & segmentation tasks \rightarrow several CNN architectures have been developed to win the competition

4.1. ImageNet & ILSVRC

ILSVRC competition

 $\Rightarrow~{\sf CNN}$ networks having won the ILSVRC competition:

4. Transfer learning

4.1. ImageNet & ILSVRC

ILSVRC competition

- $\Rightarrow~{\sf CNN}$ networks having won the ILSVRC competition:
- $\Rightarrow\,$ performance comes with a computational cost!

Most famous CNN architectures

 \Rightarrow most famous CNN networks achieving very good performances on the *ImageNet* dataset:

- LeNet-5 (1998)
- AlexNet (2012)
- GoogLeNet (2014)
- ResNet (2015)
- Xception (2016)
- SENet (2017)

Most famous CNN architectures

 $\Rightarrow\,$ most famous CNN networks achieving very good performances on the ImageNet dataset:

- LeNet-5 (1998)
- AlexNet (2012)
- GoogLeNet (2014)
- ResNet (2015)
- Xception (2016)
- SENet (2017)

$\Rightarrow\,$ explanation of the differences in architectures is beyond the scope of this lecture

- ightarrow see e.g. "Mohamed Elgendy (2020) Deep Learning for Vision Systems (Manning Editions)"
- \rightarrow see e.g. "Aurélien Géron (2022) Hands-On Machine Learning (O'Reilly Editions)"

4.3. Transfer learning using pretrained CNNs

Transfer learning using pretrained CNNs

⇒ desining and training your own network from scratch can be difficult (or impossible without enough data) → training "from scratch" means the model starts with zero knowledge, i.e. with random initialization of weights

4.3. Transfer learning using pretrained CNNs

Transfer learning using pretrained CNNs

- \Rightarrow desining and training your own network from scratch can be difficult (or impossible without enough data)
 - → training "from scratch" means the model starts with zero knowledge, i.e. with random initialization of weights

⇒ transfer learning allows to fine-tune a pretrained model

- → a pretrained model is a network that has been previously trained on a large dataset, typically on a large-scale image classification task
- → fine-tuning means starting from a pretrained model, then retraining parts of the model on a new dataset to adapt the model to the new task

4.3. Transfer learning using pretrained CNNs

Transfer learning using pretrained CNNs

- \Rightarrow desining and training your own network from scratch can be difficult (or impossible without enough data)
 - → training "from scratch" means the model starts with zero knowledge, i.e. with random initialization of weights

⇒ transfer learning allows to fine-tune a pretrained model

- → a pretrained model is a network that has been previously trained on a large dataset, typically on a large-scale image classification task
- → fine-tuning means starting from a pretrained model, then retraining parts of the model on a new dataset to adapt the model to the new task
- $\Rightarrow EX$: suppose we want to train a model that classifies images in 2 categories (e.g. bananas and apples)
 - instead of collecting hundreds of thousands of images for each class, labeling them, and training a network from scratch, we can applying transfer learning to a VGG16 network

Modified after: Elgendy (2020)

1. Introduction

- 2. How the brain recognizes images
- 3. CNN building blocs
- 4. Transfer learning

5. Application

- 1. from MLP to CNN $% \left({{{\rm{NN}}}} \right) = {{\rm{NN}}} \left({{{\rm{NN}}}} \right) = {{{\rm{NN}}}} \left({{{\rm{NN}}}$
- 2. using TensorBoard

Load

fashion

(X train

X_valid

y_valid

X_train

Build

nodel =

model m

1)

tf.

tf.

tf.I

Last week: MLP for MNIST-fashion dataset classification task

import tensorflow as tf

data mnist = tf.keran.datasets.fashion_mnist in_full, y_train_full), (X_test, y_test) = fashion_mnist.losd_data() 1, X_train = X_train_full[15000], X_train_full[1000]] ytrain = X_train_full[15000], y_train_full[1000]]	 1.1 Loa training validatio test dation
rocess data a, X_test, X_valid = X_train/255.0, X_test/255.0, X_valid/255.0	1.2 Pre - scale pi
<pre>s model (using the Sequential APT) to thore an important (horean import Finitemicing), shaper [28, 20]), horean import Demon(100, activation**rlu*), horean import. Demon(100, activation**rlu*), h</pre>	2.1 Bui - set laye

Plot training history import pandas as pd pd.DataFrame(history.history).plot()

Evaluate model
test_loss, test_acc = model.evaluate(X_test, y_test)
print('Test accuracy:', test_acc)

Predict img = X_test[0,:,:] img = (np.expand_dims(img,0)) # add image to a batch y_proba = model.predict(img).round(2) y_prot = m_arganx(model.predict(img), axis=-1)

plt.bar(range(10), y_proba[0])
plt.imshow(img[0,.,.], cmap*'binary')
plt.title('class {} = {} '.format(y_pred, class_names[np.argmax(y_proba)]))

1.1 Load data - training dataset - validation dataset - test dataset

1.2 Preprocess data - scale pixel intensities to 0-1

2.1 Build model - set layer type/order

2.2 Compile model - set loss function - set optimizer - set metrics

3. Train model - learn layer parameters (weights/biases) - plot training history (check for overfitting)

4. Evaluate model - evaluate accuracy on test dataset

5. Predict from model - predict image class using learned model

Total params: 266,610 Trainable params: 266,610 Non-trainable params: 0

Last week: MLP for MNIST-fashion dataset classification task

import tensorflow as tf

Last week: MLP for MNIST-fashion dataset classification task

import tensorflow as tf

This week: CNN for MNIST-fashion dataset classification task

Build model (MLP)

<pre>model = tf.keras.models.Sequential([</pre>
<pre>tf.keras.layers.Flatten(input_shape=[28, 28]),</pre>
tf.keras.layers.Dense(300, activation="relu"),
tf.keras.layers.Dense(100, activation="relu"),
tf.keras.layers.Dense(10, activation="softmax")
1)

Model: "sequential_5"

Layer (type)	Output	Shape	Param #
flatten_5 (Flatten)	(None,	784)	θ
dense_5 (Dense)	(None,	300)	235580
dense_6 (Dense)	(None,	100)	30100
dense_7 (Dense)	(None,	10)	1010
Total params: 266,610			
Trainable params: 266,610			
Non-trainable params; 0			

Build model (CNN)

```
model = tf.keras.models.Sequential([
    tf.keras.layers.Conv2D(64, 7, activation="relu", padding="same", input_shape=[28, 28, 1]),
    tf.keras.layers.MaxPooling2D(2),
    tf.keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
    tf.keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
    tf.keras.lavers.MaxPooling2D(2).
    tf.keras.lavers.Conv2D(256. 3. activation="relu". padding="same").
   tf.keras.lavers.Conv2D(256, 3, activation="relu", padding="same").
   tf.keras.lavers.MaxPooling2D(2).
    tf.keras.layers.Flatten(),
   tf.keras.layers.Dense(128, activation="relu"),
    tf.keras.layers.Dropout(0.5),
    tf.keras.layers.Dense(64, activation="relu"),
    tf.keras.layers.Dropout(0.5),
    tf.keras.lavers.Dense(10, activation="softmax")
1)
```

Model: "sequential"

Layer (type)	Output	Shape	Param Ø
conv2d (Conv2D)	(None,	28, 28, 64)	3200
max_pooling2d (MaxPooling2D)	(None,	14, 14, 64)	0
conv2d_1 (Conv2D)	(None,	14, 14, 128)	73856
conv2d_2 (Conv2D)	(None,	14, 14, 128)	147584
max_pooling2d_1 (MaxPooling2	(None,	7, 7, 128)	0
conv2d_3 (Conv2D)	(None,	7, 7, 256)	295168
conv2d_4 (Conv2D)	(None,	7, 7, 256)	590080
max_pooling2d_2 (MaxPooling2	(None,	3, 3, 256)	0
flatten (Flatten)	(None,	2304)	0
dense (Dense)	(None,	128)	295040
dropout (Dropout)	(None,	128)	0
dense_1 (Dense)	(None,	64)	8256
dropout_1 (Dropout)	(None,	64)	θ
dense 2 (Dense)	(None,	10)	650

Trainable params: 1,413,834

5. Application

5.1. from MLP to CNN

This week: CNN for MNIST-fashion dataset classification task

Application

TensorBoard: TensorFlow's visualization toolkit

- \Rightarrow TensorBoard provides the visualization and tooling needed for machine learning experimentation:
 - Tracking and visualizing metrics such as loss and accuracy
 - Visualizing the model graph (ops and layers)
 - Viewing histograms of weights, biases
 - etc.

TensorBoard: TensorFlow's visualization toolkit

 \Rightarrow TensorBoard is installed during the TensorFlow conda installation

TensorBoard: TensorFlow's visualization toolkit

- \Rightarrow TensorBoard is installed during the TensorFlow conda installation
- \Rightarrow To use it, you should:
 - 1. Add the tf.keras.callbacks.TensorBoard callback to the Keras Model.fit() method (ensures that logs are created and stored)

```
# Create callback
import datetime
log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
```

Add callback to model.fit()

```
history = model.fit(X_train, y_train, callbacks=[tensorboard_callback])
```

```
5. Application
```

TensorBoard: TensorFlow's visualization toolkit

- \Rightarrow TensorBoard is installed during the TensorFlow conda installation
- \Rightarrow To use it, you should:
 - 1. Add the tf.keras.callbacks.TensorBoard callback to the Keras Model.fit() method (ensures that logs are created and stored)

```
# Create callback
import datetime
log_dir = "logg/it/" + datetime.datetime.now().strftime("%Y%m%d~%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
```

Add callback to model.fit()

```
history = model.fit(X_train, y_train, callbacks=[tensorboard_callback])
```

2. Run TensorBoard from command line

```
$ conda activate tf
$ cd <working dir>
$ tensorboard --logdir logs/fit  # set directory used to store logs
```

```
5. Application
```

TensorBoard: TensorFlow's visualization toolkit

- \Rightarrow TensorBoard is installed during the TensorFlow conda installation
- \Rightarrow To use it, you should:
 - 1. Add the tf.keras.callbacks.TensorBoard callback to the Keras Model.fit() method (ensures that logs are created and stored)

```
# Create callback
import datetime
log_dir = "logg/it/" + datetime.datetime.now().strftime("%Y%m%d~%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
```

Add callback to model.fit()

```
history = model.fit(X_train, y_train, callbacks=[tensorboard_callback])
```

2. Run TensorBoard from command line

```
$ conda activate tf
$ cd <working dir>
$ tensorboard --logdir logs/fit # set directory used to store logs
```

3. Open a web-browser to the address

http://localhost:6006/

TensorBoard: TensorFlow's visualization toolkit

- \Rightarrow TensorBoard is installed during the TensorFlow conda installation
- \Rightarrow To use it, you should:
 - 1. Add the tf.keras.callbacks.TensorBoard callback to the Keras Model.fit() method (ensures that logs are created and stored)

```
# Create callback
import datetime
log_dir = "logg/it/" + datetime.datetime.now().strftime("%Y%m%d~%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
```

```
# Add callback to model.fit()
```

```
history = model.fit(X_train, y_train, callbacks=[tensorboard_callback])
```

2. Run TensorBoard from command line

```
$ conda activate tf
$ cd <working dir>
$ tensorboard --logdir logs/fit # set directory used to store logs
```

3. Open a web-browser to the address

http://localhost:6006/

Nota Bene: you can open it directly from a Jupyter cell (after training has finished however) as follows:

%load_ext tensorboard # Load the TensorBoard notebook extension %tensorboard --logdir logs # Open TensorBoard in cell