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1. Introduction

Introduction

Last week: Neural Networks Part-1 (multilayer perceptrons MLP) - DL1
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https://noeliagorod.com/2019/05/21/machine-learning-for-everyone-in-simple-words-with-real-world-examples-yes-again/

1. Introduction

Introduction

Last week: Neural Networks Part-1 (multilayer perceptrons MLP) - DL1

This week: Neural Networks Part-2 (convolutional neural networks CNN) - DL2
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1. Introduction

Introduction

Last lecture

= we trained a fully-connected neural network (MLP) to classify a “simple” dataset
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fully-connected layers
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1. Introduction

Introduction

Last lecture

= this “simple” network with only 2 hidden layers, handling “simple” images (28x28 pixels, 1-channel), and
“few classes” (10 classes) has a total of 266 610 parameters to be trained

Layer (type) Output Shape Param #
flatten (Flatten) ( , 784) 0
dense (Dense) ( , 300) 235,500
dense_1 (Dense) ( , 100) 30,100
dense_2 (Dense) ( , 10) 1,010

Total params: 266,610 (1.02 MB)
Trainable params: 266,610 (1.02 MB)
Non-trainable params: 0 (0.00 B)
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Introduction

Last lecture

= this “simple” network with only 2 hidden layers, handling “simple” images (28x28 pixels, 1-channel), and
“few classes” (10 classes) has a total of 266 610 parameters to be trained

Layer (type) Output Shape Param #
flatten (Flatten) ( , 784) 0
dense (Dense) ( , 300) 235,500
dense_1 (Dense) ( , 100) 30,100
dense_2 (Dense) ( , 10) 1,010

Total params: 266,610 (1.02 MB)
Trainable params: 266,610 (1.02 MB)
Non-trainable params: 0 (0.00 B)

= limits of fully-connected FC networks:
1. hard to scale to larger images or more complex classification tasks
EX: 128x128 RGB image with 1%t hidden-layer of 300 neurons = (128*128*3)*300 = >14 millions parameters
2. spatial structure of images are not respected (2D array flattened to 1D array)
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1. Introduction
Introduction

Last lecture

= this “simple” network with only 2 hidden layers, handling “simple” images (28x28 pixels, 1-channel), and
“few classes” (10 classes) has a total of 266 610 parameters to be trained

Layer (type) Output Shape Param #
flatten (Flatten) ( , 784) 0
dense (Dense) ( , 300) 235,500
dense_1 (Dense) ( , 100) 30,100
dense_2 (Dense) ( , 10) 1,010

Total params: 266,610 (1.02 MB)
Trainable params: 266,610 (1.02 MB)
Non-trainable params: 0 (0.00 B)

= limits of fully-connected FC networks:
1. hard to scale to larger images or more complex classification tasks
EX: 128x128 RGB image with 1%t hidden-layer of 300 neurons = (128*128*3)*300 = >14 millions parameters
2. spatial structure of images are not respected (2D array flattened to 1D array)

= do we really need to connect all the pixels together?
would rather need sparse connections: fewer weights, nearby regions related, & far apart regions not related

This lecture: from MLPs to CNNs 6 /50



2. How the brain recognizes images

2. How the brain recognizes images

9/59



2. How the brain recognizes images

2.1. Perception by the visual cortex

Perception by the visual cortex

= Convolutional Neural Networks (CNNSs) emerged from the study of the brain's visual cortex

= Experiments on cats & monkeys gave insights on how perception works (Hubel & Wiesel 1958%,1959?,19653% )
NB: the authors received the Nobel Prize in Physiology or Medicine in 1981 for their work

Visual
Screen Bar of light Retina  cortex Electrode  Oscilloscope

Optic nerve

Lateral Geniculate Nucleus

source

1Hube| D. (1959) “Single Unit Activity in Striate Cortex of Unrestrained Cats”, Th
2
Hubel D. & Wiesel T. (1959) “Receptive Fields of Single Neurons in the Cat’s Stri

e Journal of Physiology
iate Cortex”, The Journal of Physiology

3Hubel D. & Wiesel T. (1968) “Receptive Fields and Functional Architecture of Monkey Striate Cortex”, The Journal of Physiology
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https://distillery.com/blog/implementing-human-brain-exploring-potential-convolutional-neural-networks/

2. How the brain recognizes images
2.1. Perception by the visual cortex

Perception by the visual cortex

= Insights on how perception works:

1. biological neurons respond to specific patterns in regions (a.k.a. receptive fields) of the visual field

Se’S .
receptive fields
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2. How the brain recognizes images
2.1. Perception by the visual cortex

Perception by the visual cortex

= Insights on how perception works:

1. biological neurons respond to specific patterns in regions (a.k.a. receptive fields) of the visual field
2. the visual cortex is organized in layers: as the visual signal makes its way through consecutive brain modules,
neurons respond to more complex patterns in larger receptive fields

—

—

neurons in low-level layers have small receptive fields and react to simple patterns (e.g., edges)

NB: two neurons may have the same receptive field but react to different line orientations

neurons in high-level layers have larger receptive fields and react to more complex patterns that are

combinations of the lower-level patterns (e.g., triangles, rectangles, ... — e.g., house, face, ...)

receptive fields

from: Géron A. (2022)
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2. How the brain recognizes images

2.2. Reproducing brain perception with neural networks

Reproducing brain perception with neural networks

= These studies of the visual cortex inspired the neocognitron (Fukushima 1980*), which gradually evolved
into what we now call convolutional neural networks CNNs, a.k.a. ConvNets, (LeCun et al. 1998°)

Fukushima 1980 LeCun et al. 1998

S Cart.maps 16@10110
weut 1 featro maps Skit. maps 16056
Rl el $2:1. maps.

s@14x1

Full confection | Gaussian connections
Convolutions Subsampling  Convolutions ~ Subsampling Full connection

4Fukushima, K. (1980) “Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position”,
Biological Cybernetics
5LeCun, Y. et al. (1998) “Gradient-Based Learning Applied to Document Recognition”, Proceedings of the IEEE 86, no. 11
13/59



3. CNN building blocs

3. CNN building blocs
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3. CNN building blocs

3.1. Building blocs (overview)

Building blocs (overview) of a CNN

= consider 2 milestones CNN architectures: LeNet-5 (LeCun et al. 1998)% and AlexNet (Krizhevsky et al. 2012)7

LeNet AlexNet

[ Image: 28 (height) x 28 (width) x 1 (channel) | [Image: 224 (height) » 224 (width) x 3 (channels)

[C with 5x5 kernel+2padding:28x28x6 [ with 11x1Tkernel+4stride:54x54x96
 sigmoid { ReLu

[ Pool with 2x2 average kernel+2 stride: 14x14x6_| [ Pool with 3x3 max. kernel+2 stride: 26x26x96
y 13

[c ion with 5x5 Kernel (no pad):10x10x16 | [c with 5x5 kernel+2 pad:26x26x256
J sigmoid {Relu

[ Pool with 2x2 average kernel+2 stride: 5x5x16_| [ Pool with 3x3 max-kernel+2stride: 12x12x256
\ flatten

[ Dense: 120 fully neurons | [c with 3x3 kernel+1 pad:12x12x384
J sigmoid ReLu

[ Dense: 84 fully neurons | [c with 3x3 kernel+1 pad:12x12x384
J sigmoid { ReLu

[ Dense: 10 fully neurons | [c with 3x3 kernel+1 pad:12x12x256
7 {ReLu

Output: 1 of 10 classes Pool with 3x3 max.kernel+2stride:5x5x256
| flatten

[ Dense: 4096 fully connected neurons
 ReLu, dropout p=0.5

[ Dense: 4096 fully neurons
 ReLu, dropout p=0.5
Dense: 1000 fully neurons

Output: 1 of 1000 classes
source: wiki

6LeCun, Y. et al. (1998) “Gradient-Based Learning Applied to Document Recognition”, Proceedings of the IEEE 86, no. 11

7Krizhevsky, Alex, et al. (2012) “ImageNet Classification with Deep Convolutional Neural Networks”, Proceedings of the 25th NeurlPS Conference
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https://en.wikipedia.org/wiki/LeNet

3. CNN building blocs

3.1. Building blocs (overview)

Building blocs (overview) of a CNN

= consider 2 milestones CNN architectures: LeNet-5 (LeCun et al.

LeNet AlexNet
[ image: 28 (height) x 28 (width) x 1 (channel) | Image: 224 (height) x 224 (width) x 3
]
[c ion with 5x5 kernell ing:28x28x6 [c ion with 11x11kernel+4stride:54
J sigmoid {ReLu
[ Pool with 2x2 average kernel+2 stride: 14x14x6 | [_Pool with 3x3 max. kernel+2 stride: 26x26x96
N )
[c ion with 5x5 kernel (no pad):10x10x16 | [c with 5x5 kernel+2 pad:26x26x256
sigmoid RelLu
[ Pool with 2x2 average kernel+2 stride: 5x5x16_| [ Poolwith 3x3 max.Kernel+2stride: 12x12x256
\ flatten i
[ Dense: 120 fully neurons ] [ c ion with 3x3 kernel+1 pad:12x12x384.
\ sigmoid ReLu
[ Dense: 84 fully neurons ] [ c ion with 3x3 kernel+1 pad:12x12x384.
\ sigmoid RelLu
[ Dense: 10 fully connected neurons ] [ c ion with 3x3 kernel+1 pad:12x12x256
v J ReLu
Output: 1 of 10 classes [ Pool with 3x3 max.kernel+2stride:5x5x256
| flatten
[ Dense: 4096 fully neurons
{ ReLu, dropout p=0.5
[ Dense: 4096 fully neurons
{ ReLu, dropout p=0.5
[ Dense: 1000 fully neurons

Output: 1 of 1000 classes

1998) and AlexNet (Krizhevsky et al. 2012)

[convolutional layers| = extract features
— receptive field, filter kernel /depth,
feature maps, padding, stride

pooling layers| = downsample

— pooling kernel, stride

= classify

— fully connected layers

activation function = achieve
non-linearity
— sigmoid, Relu, ...

flatten layer = matrix/tensor to vector

dropout layer = prevent overfitting
(regularization)
— in the fully connected layers

16 /59



3. CNN building blocs

3.1. Building blocs (overview)

Building blocs (overview) of a CNN

= illustration of the building blocs of convolutional networks

Feature learning Classification

fully connected layers

Input Convolution layer Pooling layer ;
feat featt
(28 x28) S sy IXF|  softmax
0 0.01
Convolution layer  Pooling layer |o to o 0.2
feature maps feature maps fol» 0.18
(8%8x20) (4x4x20) 3 lo bo |~ 0.002
[ o o 0.62
o o o
o o o
o o o
o o (]
o ) \o 0.008
Receptive = ©| 10 classes
Field O \:
. o
flattening " e
Convolution Pooling Convolution Pooling
(5x5 kernel) (2x2) (5x%5 kernel) (2x2)

10 filters 20 filters
Modified after: Elgendy (2020)
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3. CNN building blocs
3.2. Convolutional layer

CONYV | Convolutional layer

= convolution: reminder of Lecture 03 (filtering)

Receptive—__
field A

Destination pixel
(~1x3)+(0x0)+(1x1)+
(2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1)=-3

@l

< 2
Source— L/Z 0 ~|
pixel o

N pyd
Convolution —~
filter (3x3)

a.k.a. kernel

Modified after: Elgendy (2020)

® filter kernel = matrix of weights applied to extract
features from the input
= weights are learned by CNN during training!
= hyperparameters to be set:
- size (3x3, 5x5, ...)
- depth (number of filters)

destination pixel = weighted sum of pixel-values in
the receptive field and the filter-weights

® receptive field = area of the image that the filter
convolves

NB: strictly speaking, convolutional layers actually use cross-correlations, which are very similar to convolutions

18/59



3. CNN building blocs
3.2. Convolutional layer

CONYV | Convolutional layer

= convolution: reminder of Lecture 03 (filtering)

zero-padding
pad=1

= The filter slides over the entire image

stride

(sliding step) ® stride = Slldlng step
= hyperparameter to be set

® zero-padding = add zeros around the input image to
keep output the same size
= hyperparameter to be set

® feature map (a.k.a. activation map) = convolved
image
Convolved image —

a.k.a. feature map
a.k.a. activation map
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3. CNN building blocs
3.2. Convolutional layer
CONV | Convolutional layer
= What's different with respect to Lecture 037

— in CNNs, the filter weights are randomly initialized and the values are learned by the network
— in doing so, the network learns to extract useful features from the image

20/59



3. CNN building blocs
3.2. Convolutional layer
CONYV | Convolutional layer
= What's different with respect to Lecture 037

— in CNNs, the filter weights are randomly initialized and the values are learned by the network
— in doing so, the network learns to extract useful features from the image

= Example: image modified by 2 possible filters
— vertical filter (7x7 matrix of Os with 1s in central column) = vertical lines get enhanced
(since all inputs in the receptive field are multiplied by 0, except for those in the central vertical line)
— horizontal filter (7x7 matrix of Os with 1s in central row) = horizontal lines get enhanced

Feature Feature
map 1 L \ map 2
T L

From: Géron (2022) 21/59



3. CNN building blocs
3.2. Convolutional layer

CONYV | Convolutional layer

= stacking convolutional layers allows the network to learn progressively learn more complex features

EX: simplified version of how CNNs learn faces
— 15t layer learns basic features (lines & edges)
— 2" Jayer assembles those into recognizable shapes (corners & circles)
— deeper layers learn more complex shapes such (eyes, ears, etc.)

Low-level Mid-level High-level
feature feature feature

Modified after: Elgendy (2020)
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3. CNN building blocs
3.2. Convolutional layer
CONYV | Convolutional layer

= each convolutional layer usually has >1 filters!
NB: increasing the number of filters in a hidden convolutional layer of a CNN, is equivalent to increasing the

number of neurons in a hidden fully-connected layer of a MLP (3x3 kernel = 9 neurons)

(~1x3)+(0x0)+(1x1)+ (0x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2)+ (0%x2)+(0x6)+(2x2)+
(-1%x2)+(0x4)+(1x1)+0=-3 (0x2)+(0x4)+(1x1)+1=5

\
AN\
INAVANAN
\

\\\Tﬂ\ﬂ\éx
\\
\

inpy, |
(5)(‘9')("'1596- 'ﬁ\"” |
ilte, |
<1303 gi= gl g
18. X2
40 L1 —
Py, = g
|
|
=
%
Bxgyp®
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3. CNN building blocs

3.2. Convolutional layer

CONV | Convolutional layer

= what if we are handling 1 filter, but input image with > 1 channel (e.g. RGB)?

Input volume (+pad 1) (7 x 7 x 3) Filter (3 x 3% 3)
Red wol:,:,0]
oo 0 o 0 ofofo E
offo]l1]1 1 0o o 1 o]0
of[2][1] 1 o 2 o 1ol
00 2 0 2 0x0+0x0+0x0+
B EER 0x140%0+1x0+

0x1+2x0+1x0=0

Green wol:,:, 1] + bias 1

offo 0 o 0 1] o= 178

SR 0 o EIL a®ﬁ

offofjo[1 o 2 o o1 5|52
I I N 0x1+0x0+0x-1+

0x—1+0xT+1x1+
0x-1+0x0+0x1=1

Blue wol:,:,2]

2 [[o][o] e [0 [0 o 1 |[=1][ o

iffoff2]1 1 o0 i 1 110

of1]2| 1 0 2 0 o 1|
i 0x1+0x-1+0x0+

0x1+0x142x0+
0x0+1x142x-1=-1

Bias b

Modified after: Elgendy (2020) ! 24 /59



3. CNN building blocs

3.2. Convolutional layer

CONV | Convolutional layer

= what if we are handling > 1 filter with input image having > 1 channel (e.g. RGB)?

Input volume (+pad 1) (7 x 7 x 3) Filter 1 Filter 2 Output volume (3 x 3 x 2)
o[:.:,0]
0 0 o0 1 [[-f 1 1.7 5
001 1 1 0 1.0 0 || 1 4 4 9
2 1 1 [o]f2][o] 1.0 0 1|1 5 |5 |2

o E i EE 1.0 -
= M2
-1 0 1

0o 0o 1 [1ff2

1 =) Jo 1)1 1
11 1 {ofl1

1.1 0 1] loff1
0o 2 1|off2

0 1 - 111

Biasb0(1x1x1)  Biasbl(1x1x1)
b0[:,:,0] b1[:,:,0]
1 0

Modified after: Elgendy (2020) 2 01 0 0
See animation at: stanford.edu 25 /50



https://cs231n.github.io/convolutional-networks/

3. CNN building blocs
3.2. Convolutional layer

CONYV | Convolutional layer

= the output size of the feature map is determined by the following formula:

output size = w +1

input size

filter size
where:

padding

U)‘U"'l§

stride

EX: input size W=7x7, filter size F=3x3, pad=0, stride S=1 = output size = 5x5

26 /59



3. CNN building blocs
3.2. Convolutional layer

Activation function

= similar to what we saw for MLPs, activation functions are used to introduce non-linearity in the network
NB: a convolutional layer performs a linear operation, so stacking multiple convolutional layers without any
activation functions would be equivalent to a single convolutional layer, unable to learn anything complex

= most common activation function is ReLU (Rectified Linear Unit): f(x) = max(0, x)

NB: RelU is preferred because of its computational efficiency and its ability to avoid the vanishing gradient problem

f(x) = max(0, x)

27 /59



3. CNN building blocs

3.2. Convolutional layer

Convolutional layer

= final comments on the advantages of convolutional layers with respect to fully-connected layers:

® neurons in the first convolutional layer are not connected to every single pixel in the input image, but
only to pixels in their receptive fields
= this allows the network to extract small low-level features in the first hidden layer, then assemble them
into larger higher-level features in the next hidden layers

® all neurons in a feature map share the same parameters, which dramatically reduces the number of
parameters in the model
= once the CNN has learned to recognize a pattern in one location, it can recognize it in any other location.
In contrast, once a fully connected neural network has learned to recognize a pattern in one location, it can
recognize it in that particular location

28 /59



3. CNN building blocs
3.3. Pooling layer
POOL | Pooling layer (subsampling)

= increasing the number of convolutional layers increases the number of parameters to be learned

= pooling layers are used to reduce (subsample) the spatial dimensions of the feature map while keeping
the most important information. Types of pooling layers: max pooling and average pooling

EX: 3x3 max pooling filter with stride=3, reducing the feature map from 9x9 to 3x 3

g 0
1 pred|
0 rdE
g 2
6 8
2 /1/ 0
4 0
2 1
_{ 0 il I
( %
2 71°
A
14 4
7
7| ° o
9
2 ' 0
1
6
1
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3. CNN building blocs
3.3. Pooling layer
POOL | Pooling layer (subsampling)

= increasing the number of convolutional layers increases the number of parameters to be learned

= pooling layers are used to reduce (subsample) the spatial dimensions of the feature map while keeping
the most important information. Types of pooling layers: max pooling and average pooling

EX: 3x3 max pooling filter with stride=3, reducing the feature map from 9x9 to 3x 3

= changing the stride will change the size of the feature map
stride = 1 stride = 2 stride = 3

H o @

30/59



3. CNN building blocs
3.3. Pooling layer
POOL | Pooling layer (subsampling)

= pooling layers reduce image resolution while keeping the image's important features

(think of it as an image-compressing program)

Convolution
—_—1T>

Pooling

Convolutiop _
i
Fully
connected-.
onnected
———

Original Downsampled

From: Elgendy (2020)

NB: stride during convolution also allow to reduce the size of the feature map, many authors have suggested that
pooling operations could be removed in favor of adjusting stride/padding in the convolutional layer.
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3. CNN building blocs

3.4. Flatten layer

Flatten layer

= Flattening is used to convert an image matrix (2D) or tensor (n-2D) into a vector (1D)
NB: during the flatenning process, the 2D information is entirely lost.

Row 1 Xo | X | X3 | X

Flattening

Row 2 Xs | X | X7 | X

Modified after: Elgendy (2020)
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3. CNN building blocs
3.4. Flatten layer

Flatten layer

= Flattening is used to convert an image matrix (2D) or tensor (n-2D) into a vector (1D)
NB: during the flatenning process, the 2D information is entirely lost.

Row 1

Row 2

= Where are the flatten layers?

X | % | x| %,
X5 | X | % | X
X9 X1 0 X1 1 X1 2
Xia| X1a| X15| Xi6

Flattening

X5|Xs|x7|xa ‘ X9|X10|X11 X12|X13|X14 X15|X1e‘

Row 1

Modified after: Elgendy (2020)

— in MLPs, the input image is flattened into a vector and parsed to the FC layers for classification
— in CNNs, the feature maps (learned in the convolutional layers CONV) are flattened, and the feature vector is
fed to the FC layers for classification
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3. CNN building blocs

3.5. Dropout layer

Dropout layer (regularization)

= Dropout is a popular regularization technique used to prevent overfitting of deep neural networks

— dropout layers are introduced between the fully connected layers (at the end of the network architecture)

AlexNet
[image: 224 (height) x 224 (width) x 3 (channels)]

[Convolution with 1x11kernel+4stride:54x54x96 |
[ ReLu
[ Pool with 3x3 max. kernel+2 stride: 26x26x96_|

[ Convolution with 5x5 Kernel+2 pad:26x26x256_|
[ ReLu

[ Pool with 3x3 max.kernel+2stride: 12x12x256

[_Convolution with 3x3 kernel+1 pad:12x12x384
[ ReLu
[_Convolution with 3x3 kernel+1 pad:12x12x384
| ReLu
["Convolution with 3x3 kernel+1 pad:12x12x256
V ReLu
[ Pool with 3x3 max.kernel+2stride:5x5x256
flatten
Dense: 4096 fully neurons
{ ReLu. dropout p=0.5 _ <¢mm dropout
[ Dense: 4096 fully neurons |
U ReLu, dropoutp=05 _ «fmm dropout
| Dense: 1000 fully connected neurons |

Output: 1 of 1000 classes
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3. CNN building blocs
3.5. Dropout layer
Dropout layer (regularization)

= Dropout is a popular regularization technique used to prevent overfitting of deep neural networks

— dropout layers are introduced between the fully connected layers (at the end of the network architecture)

— dropout randomly “turns off” a percentage of neurons (nodes) making up a layer of the network
= these neurons are not included in the forward or backward pass

X
¢ @)

Dropout -
X X Q)

N\

From: Elgendy (2020)
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3. CNN building blocs
3.5. Dropout layer
Dropout layer (regularization)

= Dropout is a popular regularization technique used to prevent overfitting of deep neural networks

— dropout layers are introduced between the fully connected layers (at the end of the network architecture)

— dropout randomly “turns off” a percentage of neurons (nodes) making up a layer of the network
= these neurons are not included in the forward or backward pass

Dropout

X X

o

From: Elgendy (2020)

— this forces all nodes to learn without relying specific nodes (since they can be dropped at any point)
= spreads out the weights among all neurons (avoiding neurons to become too “strong” or too “weak”)
= makes the network more resilient (less dependent on specific nodes)
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3. CNN building blocs

3.6. Summary (cheat-sheet)

Summary (cheat-sheet)

Convolutional layer
= 1 fiter applies a convolution between filter-weights and pixel-values in the rece multiply each p it and summing gives the c el value in new image)
= convolution layer = K filters
weurx outpuTV
7 .
& Vo = Exw;) + bo
Hyperparameters
g - receptive field (F)
1 Iter size
=4 2005)41 B: usua
fiter 1 !
(woy | - depth (K)
(haxh)xd, | number of filters
ExampLe 4 .
i - stride (S)
= number of pixels the filter slides across the image at each step
" " : V>0 = v=0 ! :
activation function (ReLu) - zero-padding (P)
= applies threshold | = pad the input volume with zeros around the border
- dropout rate (p)
= percentage of the input units to drop
NB: hyper-parameters control the output volume size:
Vi = max(xa, xi, X, %)
Pooling layer (max-pooling) | e’
= reduces dimentionaity (for memory issue }
= enables networ image at large +
(e
huc((h-FUS)+1
(b 37/59



. Transfer learning

4. Transfer learning
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4. Transfer learning
4.1. ImageNet & ILSVRC
Data is key

= the deeper the network, the more powerful it can be, but the more data it needs to be trained

= ImageNet dataset: large-scale image dataset with 1.2 million images and 1,000 classes (ImageNet)
— Deng, J. et al. (2009) ImageNet: A Large-Scale Hierarchical Image Database. CVPR
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4. Transfer learning
4.1. ImageNet & ILSVRC
Data is key

= the deeper the network, the more powerful it can be, but the more data it needs to be trained

= ImageNet dataset: large-scale image dataset with 1.2 million images and 1,000 classes (ImageNet)
— Deng, J. et al. (2009) ImageNet: A Large-Scale Hierarchical Image Database. CVPR

= ILSVRC competition: “ImageNet Large Scale Visual Recognition Competition”
— compitition held between 2010-2017 using ImageNet as benchmark for image classification & segmentation

tasks — several CNN architectures have been developed to win the competition
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4. Transfer learning
4.1. ImageNet & ILSVRC

ILSVRC competition

= CNN networks having won the ILSVRC competition:

ImageNet Top-5 Error

10

NEC-UIUC

2010 2011 2012 2013 2014 2014 2015 2016 2017

Image credit: Z. Alyafeai, L. Ghouti
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4. Transfer learning

4.1. ImageNet & ILSVRC

ILSVRC competition

= CNN networks having won the ILSVRC competition:

= performance comes with a computational cost!

Inception-v4
0 282 8 i
. Inception-v3 ResNet-152
258 ResNet-50 VGG-16 VGG-19
25 75 ResNet-101
5 ResNet-34
'-E g 70 ResNet-18
B 2ol o
s © GooglLeNet
e 5 ENet
B 153 B 65
Z 15 ©
S, % © BN-NIN
s S
g, o 60 5M  35M  65M  95M  125M 155M
=
3 BN-AlexNet
. g 55 AlexNet
50
0 5 10 15 20 25 30 35 40

2010 2011

2012 2013 2014 2014

2015 2016 2017

Image credit: Z. Alyafeai, L. Ghouti

Operations [G-Ops]

From: Cansiani et al. (2017)
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4. Transfer learning
4.2. Famous CNN architectures

Most famous CNN architectures

= most famous CNN networks achieving very good performances on the ImagelNet dataset:

® LeNet-5 (1998)
AlexNet (2012)
GoogleNet (2014)
ResNet (2015)
Xception (2016)
SENet (2017)
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4. Transfer learning
4.2. Famous CNN architectures

Most famous CNN architectures

= most famous CNN networks achieving very good performances on the ImagelNet dataset:

® LeNet-5 (1998)
AlexNet (2012)
GoogleNet (2014)
ResNet (2015)
Xception (2016)
SENet (2017)

= explanation of the differences in architectures is beyond the scope of this lecture
— see e.g. “Mohamed Elgendy (2020) Deep Learning for Vision Systems (Manning Editions)”
— see e.g. “Aurélien Géron (2022) Hands-On Machine Learning (O’'Reilly Editions)”
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4. Transfer learning

4.3. Transfer learning using pretrained CNNs

Transfer learning using pretrained CNNs

= desining and training your own network from scratch can be difficult (or impossible without enough data)

— training “from scratch” means the model starts with zero knowledge, i.e. with random initialization of weights
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4. Transfer learning

4.3. Transfer learning using pretrained CNNs

Transfer learning using pretrained CNNs

= desining and training your own network from scratch can be difficult (or impossible without enough data)

— training “from scratch” means the model starts with zero knowledge, i.e. with random initialization of weights

= transfer learning allows to fine-tune a pretrained model

— a pretrained model is a network that has been previously trained on a large dataset, typically on a large-scale image classification task

— fine-tuning means starting from a pretrained model, then retraining parts of the model on a new dataset to adapt the model to the new task
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4. Transfer learning

4.3. Transfer learning using pretrained CNNs

Transfer learning using pretrained CNNs

= desining and training your own network from scratch can be difficult (or impossible without enough data)

— training “from scratch” means the model starts with zero knowledge, i.e. with random initialization of weights

= transfer learning allows to fine-tune a pretrained model

— a pretrained model is a network that has been previously trained on a large dataset, typically on a large-scale image classification task

— fine-tuning means starting from a pretrained model, then retraining parts of the model on a new dataset to adapt the model to the new task

= EX: suppose we want to train a model that classifies images in 2 categories (e.g. bananas and apples)
— instead of collecting hundreds of thousands of images for each class, labeling them, and training a network from scratch, we can applying transfer
learning to a VGGI16 network

Freeze the weights in the Remove the
feature extraction layers classifier

Add softmax layer
with 2 units

Pool/2
Pool/2
Pool/2

o
°
S
a

3 x 3 CONV, 64
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©
>
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©
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©
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@© ©
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(/Softmax 1000\ ]
Softmax 2
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5. Application

5. Application
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5. Application

5.1. from MLP to CNN

Last week: MLP for MNIST-fashion dataset classification task

import tensorflow as tf

-
# Load data 1
fashion_mnist = tf.keras.datasets.fashion_mnist 1.1 Load data | a1
“training dataset : |
(X_train_full, y_train_full), (K_test, y_test) = fashion_mnist.load_data() - validation dataset ok oot Taren Tahriien D Tanvtor
X_valid, X_train = X_train_full[:5000], X_train_ful1[6000:] test dataset
y_valid, y_train = y_train_full(:5000], y_train_full(5000:] &%
‘ % | A
# Preprocess data 1.2 Preprocess data |
X_train, X_test, X_valid = X_train/255.0, X_test/265.0, X_valid/255.0 scale pixel intensities to 0-1
Patover e Taover e e

# Build model (ueing the Sequential APD) Hodel: “sequential®
model = tf.keras.models. Sequental ([

o keras layers. Flatten(inpus_shape-(28, 261), . Taver (type) Output Shape Paran #

tf.keras. layers.Dense(300, activatio 2.1 Build model e A S

£ koras. layers.Densa (100, activatior - set layer type/order

£ keras. layers.Dense(10, activation="softnax") Gense (Dense) ane, 3001 235500

jense 1 (oense one, 0160
nodel. sumnary ) gensei (Dense) (fone, 100)
. dense 2 (bense) (None, 10) 1010
# Compile model 2.2 Compile model
RodeL..conpi1a(1085="spare. categor cal_crossentropy” ~set loss function Total parans: 200,010
b N - set optimizer Non-trainable parans: ©
natrice=["accuracy"”

- set metrics

# Train model
history = model £t(X_train, y_train, validation data=(X_valid, y_valid),

epochs=30, # nb of times X_train is seen seen

Tateilaizass2)] £1nb) of|inagas pex training instance 3. Train model
print(‘training instances per epoch = {}'.format(X_train.shape (0] / 32)) - learn layer parameters (weights/biases)

- plot training history (check for overfitting)

# Plot training history
import. pandas as pd
pd.DataFrane (history.history) .plot )

# Evaluate model
model.evaluate(X_test, y_test)

print('Test accuracy:', test_acc)
# Predict as s
= X_test[0,:,:] g 3
ing = (np.expand_dims(ing,0)) # add image to a batch 206 1
y_proba = model.predict (img) .round(2) H ]
y_pred = np.argnax(model.predict(img), axis=-1) g |

plt.bar (range (10), y_proba[0])
plt. imshow(ing[0,:,:], cmap='binary')
plt.title('class {} = {}'.format(y_pred, class_names[np.argnax(y_proba)]))

class
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5. Application

5.1. from MLP to CNN

Last week: MLP for MNIST-fashion dataset classification task

import tensorflow as tf

# Load data
fashion_mnist = tf.keras.datasets. fashion_mnist

(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist.load_data()
X_valid, X_train = X_train_full[:5000], X_train_ful1[5000:]
y-valid, y_train = y_train_full[:5000], y_train_full[5000:]

# Preprocess data
X_train, X_test, X_valid = X_train/256.0, X_test/266.0, X_valid/255.0

# Build model (using the Sequential APT)
model = tf .keras models . Sequential ([
tf keras. layers.Flatten(input_shape=[28, 281),

tf . keras. layers.Denss (100, activatior
£ .keras. layers.Dense (10, activation:

model. sunmary ()

# Compile model
nodel. conpile (loss="sparse_categorical crossentxopy",
optinizer="sgd",

metrics=["accuracy"])

# Train model

history = model.fit(X_train, y_train, validation data=(X_valid, y.valid),
©pochs=30, # nb of times X_train is seen seen
batch_size=32) # mb of images per training instance

print('training instances per epoch = {}'.format (X_train.shape[0] / 32))

# Plot training history
import pandas as pd
pd.DataFrane (history.history) .plot()

# Evaluate model
test_loss, test_acc = model.evaluate(X_test, y._test)
print('Test accuracy:', test_acc)

# Predict.
ing = X_test[0,:,:]

ing = (np.expand_dims(ing,0)) # add image to a batch
y-proba = model.predict (ing) .round(2)

y_pred = np.argnax(model .predict (ing), axis=-1)

plt.bar(range(10), y_proba[0])
plt.imshow(ing[0,:,:], cmap='binary')
plt.title('class {} = {}'.format(y_pred, class_names[np.argmax(y_proba)]))

1.1 Load data

- training dataset

- validation dataset
test dataset

1.2 Preprocess data
scale pixel intensities to 0-1

2.1 Build model
- set layer type/order

2.2 Compile model
- set loss function

- set optimizer

- set metrics

3. Tr: model
- learn layer parameters (weights/biases)
- plot training history (check for overfitting|

e oot

STILR N
() [ ] e [ g

output

= 10-class probability vector

100 neuron:

class probabilty
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5. Application

5.1. from MLP to CNN

Last week: MLP for MNIST-fashion dataset classification

import tensorflow as tf

# Load data
fashion_mnist = tf.keras.datasets. fashion_mnist

(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist.load_data()
_train_full(:5000], X_train_ful1[5000:)
_train_full(:5000], y_train_full(5000:]

X_valid, X_trai:
y-valid, y_train

# Preprocess data
X_train, X_test, X_valid = X_train/265.0, X_test/266.0, X_valid/256.0

# Build model (using the Sequential APT)
model = tf .keras models . Sequential ([
tf keras. layers.Flatten(input_shape=[28, 281),
£ keras. layers.Dense (300, activation="relu")
tf keras. layers.Dense(100, activation="relu"
£ keras. layers .Dense(10, activation="softnax")

model. sunmary ()

# Compile model
model.. conpile(loss="spar
optimize
natrice=["accuracy"])

categorical_crossentropy”,

# Train model

history = model.fit(X_train, y_train, validation data=(X_valid, y.valid),
©pochs=30, # nb of times X_train is seen seen
batch_size=32) # mb of images per training instance

print(‘training instances per epoch = {}'.format(X_train.shape (0] / 32)) - learn layer parameters (weights/biases) input = image (2
- plot training history (check for overfitting|

# Plot training history

import. pandas as pd — s

pd.DataFrane (history.history) .plot ) 02| — scaurscy

1.1 Load data

- training dataset

- validation dataset
test dataset

1.2 Preprocess data
scale pixel intensities to 0-1

2.1 Build model
- set layer type/order

2.2 Compile model
- set loss function

- set optimizer

- set metrics

3. Train model

task

AF 0

Ak\ht

1
[ [ < [ g

output

1,000 weights (100+10)

EX1: simple model above on the simple MNIST-fashion dataset (28x28 pix) = 266,610 parameters

= 10,000 x 1,000 = 10 million connections, only for the first layer!

MLP are powerful, but break for large images due to the huge amount of parameters to optimize

EX2: 100x100 image = 10,000 pixels, with first hidden layer having 1,000 neurons (which is already very restrictive)

plt.title('class {} = {}'.format(y_pred, class_names[np.argmax(y_proba)]))

T g

class
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5. Application

5.1. from MLP to CNN

This week: CNN for MNIST-fashion dataset classification task

# Build model (MLP)
model = tf.keras.models.Sequential([

tf.keras.models.Sequential ([

tf .keras.layers.Flatten(input_shape=[28, 28]), tf .keras.layers.Conv2D(64, 7, activation="relu", padding="same", input_shape=[28, 28, 1]),
tf .keras. layers.Dense (300, activation="relu"), tf .keras.layers.MaxPooling2D(2),

tf .keras. layers.Dense(100, activation="relu"), tf .keras. layers.ConvaD(128, 3, activation="relu", padding="same"),

tf .keras.layers.Dense (10, activation="softmax") tf .keras.layers.ConvaD(128, 3, activation="relu", padding="same"),

D tf.keras.layers.MaxPooling2D(2),

tf.keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
t£f.keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
Model: “sequential 5* tf.keras.layers.MaxPooling2D(2),

tf.keras.layers.Flatten(),

Layer (type) output Shape Paran # tf .keras.layers.Dense (128, activation="relu"),

flatten 5 (Flatten) (None, 784) 0 tf .keras.layers.Dropout (0.5),

tf.keras.layers.Dense(64, activation="relu"),

dense 5 (Dense] (None, 300) 235560 £f.keras.layers.Dropout (0.5))

dense 6 (Dense) (None, 160) 36100 tf.keras.layers.Dense(10, activation="softmax")
D

dense 7 (Dense] Wone, 10) 1016

Total params: 266,610
Trainable parans: 266,610 Model: "sequential®
Non-trainable params: 0

Coyer o) output sape Paran s
per— e, 25, 7o, o0 e

max_pooling2d (MaxPooling2D) (None, 14, 14, 64) [

oz (G W, T8, 10, 107

o pootingad 1 asposting? Gione. 7. 7, 129 0

oz (cawam) o

Convad 4 (Convad) None, 7, 7, 256) 596680

o pootingai 2 (aspooting? (iane. 3 3, 750 .

v (rraen Wore, 73087 5

dense (Dense) (None, 128) 295040

rapout orapout e, 1299 v

o T ey o, 687 o256

dropout 1 (Dropout) (None, 64) 0

) o, 187

ep——— 52 /59



5. Application

5.1. from MLP to CNN

This week: CNN for MNIST-fashion dataset classification task

d model (MLP)

= tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=[28, 28]),
tf .keras. layers.Dense(300, activation="relu"),
tf.keras.layers.Dense(100, activation="relu"),
tf .keras.layers.Dense(10, activation="softmax")

Multi Layer Perceptron (MLP)

Output

Function
Fully
Connected
Layer
. Probabilstic
Classification Distribution

# Bui

model

NN)

(i

model = tf.keras.models.Sequential([
tf .keras. layers.Conv2D(64, 7, activation="relu", padding="same", input_shape=[28, 28,
tf .keras. layers.MaxPooling2D(2),
tf.keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
tf.keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
tf.keras. layers.MaxPooling2D(2),
tf.keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
tf.keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
tf .keras. layers.MaxPooling2D(2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense (128, activation="relu"),
t£.keras.layers.Dropout (0.5),
tf.keras.layers.Dense(64, activation="relu"),
tf.keras.layers.Dropout (0.5),
tf.keras.layers.Dense (10, activation="softmax")

1b)

Convolutional Neural Network (CNN)
Input

Pooling

<

Output
Pooling  Pooling

dress
boot
teshirt

Activation

11,

Convolution  Convolution  Convolution O\ Funciion
Kernel RelU ReLU Rely Flatten
Feature Maps -
Probabilstic
Feature Extraction Classification Probebliic
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5. Application

Application

TensorBoard: TensorFlow’s visualization toolkit

= TensorBoard provides the visualization and tooling needed for machine learning experimentation:
® Tracking and visualizing metrics such as loss and accuracy
® Visualizing the model graph (ops and layers)
® Viewing histograms of weights, biases
® etc.

¢ @

TensorBoard  SCALARS GRAPHS  DISTRIBUTIONS  HISTOGRAMS  TIME SERIES waCTvE

0 Show data download inks.

gnore utlers n char scaing

oot soting method: defautt
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5. Application
5.2. using TensorBoard

TensorBoard: TensorFlow’s visualization toolkit

= TensorBoard is installed during the TensorFlow conda installation
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5. Application

5.2. using TensorBoard

TensorBoard: TensorFlow’s visualization toolkit

= TensorBoard is installed during the TensorFlow conda installation

= To use it, you should:

1. Add the tf.keras.callbacks.TensorBoard callback to the Keras MOde|fIt() method (ensures that logs are created and stored)
# Create callback
import datetime
log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m/d-%H/M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)

# Add callback to model.fit()
history = model.fit(X_train, y_train, callbacks=[tensorboard_callback])
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5. Application

5.2. using TensorBoard

TensorBoard: TensorFlow’s visualization toolkit

= TensorBoard is installed during the TensorFlow conda installation

= To use it, you should:

1. Add the tf.keras.callbacks.TensorBoard callback to the Keras MOde|fIt() method (ensures that logs are created and stored)
# Create callback
import datetime
log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m/d-%H/M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)

# Add callback to model.fit()
history = model.fit(X_train, y_train, callbacks=[tensorboard_callback])

2. Run TensorBoard from command line

$ conda activate tf
$ cd <working dir>
$ tensorboard --logdir logs/fit # set directory used to store logs
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5. Application

5.2. using TensorBoard

TensorBoard: TensorFlow’s visualization toolkit

= TensorBoard is installed during the TensorFlow conda installation

= To use it, you should:

1. Add the tf.keras.callbacks.TensorBoard callback to the Keras MOde|fIt() method (ensures that logs are created and stored)
# Create callback
import datetime
log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m/d-%H/M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)

# Add callback to model.fit()
history = model.fit(X_train, y_train, callbacks=[tensorboard_callback])

2. Run TensorBoard from command line

$ conda activate tf
$ cd <working dir>
$ tensorboard --logdir logs/fit # set directory used to store logs

3. Open a web-browser to the address
http://localhost:6006/
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5. Application

5.2. using TensorBoard

TensorBoard: TensorFlow’s visualization toolkit

= TensorBoard is installed during the TensorFlow conda installation

= To use it, you should:

1. Add the tf.keras.callbacks.TensorBoard callback to the Keras MOde|fIt() method (ensures that logs are created and stored)
# Create callback
import datetime
log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m/d-%H/M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)

# Add callback to model.fit()
history = model.fit(X_train, y_train, callbacks=[tensorboard_callback])

2. Run TensorBoard from command line

$ conda activate tf
$ cd <working dir>
$ tensorboard --logdir logs/fit # set directory used to store logs

3. Open a web-browser to the address
http://localhost:6006/

Nota Bene: you can open it directly from a Jupyter cell (after training has finished however) as follows:
%load_ext tensorboard # Load the TensorBoard notebook extension

/tensorboard --logdir logs # Open TensorBoard in cell 50 /59
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