
UNAM - Posgrado en Ciencias de la Tierra - Semestre 2025-1

Lecture 12
Deep Learning 02

Convolutional Neural Networks

2024-11-19
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1. Introduction

Introduction

Last week: Neural Networks Part-1 (multilayer perceptrons MLP) - DL1

This week: Neural Networks Part-2 (convolutional neural networks CNN) - DL2
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1. Introduction

Introduction

Last lecture
⇒ we trained a fully-connected neural network (MLP) to classify a “simple” dataset

HIDDEN layer 1
300 neurons

HIDDEN layer 2
100 neurons

INPUT layer
784 inputs (28x28 pixels)

OUTPUT layer
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1. Introduction

Introduction

Last lecture
⇒ this “simple” network with only 2 hidden layers, handling “simple” images (28x28 pixels, 1-channel), and

“few classes” (10 classes) has a total of 266 610 parameters to be trained

⇒ limits of fully-connected FC networks:
1. hard to scale to larger images or more complex classification tasks

EX: 128x128 RGB image with 1st hidden-layer of 300 neurons = (128*128*3)*300 = >14 millions parameters
2. spatial structure of images are not respected (2D array flattened to 1D array)

⇒ do we really need to connect all the pixels together?
would rather need sparse connections: fewer weights, nearby regions related, & far apart regions not related
This lecture: from MLPs to CNNs
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2. How the brain recognizes images

2.1. Perception by the visual cortex

Perception by the visual cortex
⇒ Convolutional Neural Networks (CNNs) emerged from the study of the brain’s visual cortex

⇒ Experiments on cats & monkeys gave insights on how perception works (Hubel & Wiesel 19581,19592,19683)
NB: the authors received the Nobel Prize in Physiology or Medicine in 1981 for their work

source
1Hubel D. (1959) “Single Unit Activity in Striate Cortex of Unrestrained Cats”, The Journal of Physiology
2Hubel D. & Wiesel T. (1959) “Receptive Fields of Single Neurons in the Cat’s Striate Cortex”, The Journal of Physiology
3Hubel D. & Wiesel T. (1968) “Receptive Fields and Functional Architecture of Monkey Striate Cortex”, The Journal of Physiology
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2. How the brain recognizes images

2.1. Perception by the visual cortex

Perception by the visual cortex
⇒ Insights on how perception works:

1. biological neurons respond to specific patterns in regions (a.k.a. receptive fields) of the visual field

2. the visual cortex is organized in layers: as the visual signal makes its way through consecutive brain modules,
neurons respond to more complex patterns in larger receptive fields

→ neurons in low-level layers have small receptive fields and react to simple patterns (e.g., edges)
NB: two neurons may have the same receptive field but react to different line orientations

→ neurons in high-level layers have larger receptive fields and react to more complex patterns that are
combinations of the lower-level patterns (e.g., triangles, rectangles, ... → e.g., house, face, ...)

from: Géron A. (2022)
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2. How the brain recognizes images

2.2. Reproducing brain perception with neural networks

Reproducing brain perception with neural networks

⇒ These studies of the visual cortex inspired the neocognitron (Fukushima 19804), which gradually evolved
into what we now call convolutional neural networks CNNs, a.k.a. ConvNets, (LeCun et al. 19985)

Fukushima 1980 LeCun et al. 1998

4Fukushima, K. (1980) “Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position”,
Biological Cybernetics

5LeCun, Y. et al. (1998) “Gradient-Based Learning Applied to Document Recognition”, Proceedings of the IEEE 86, no. 11
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3. CNN building blocs

3.1. Building blocs (overview)

Building blocs (overview) of a CNN

⇒ consider 2 milestones CNN architectures: LeNet-5 (LeCun et al. 1998)6 and AlexNet (Krizhevsky et al. 2012)7

LeNet

Output: 1 of 10 classes

flatten

sigmoid

sigmoid

sigmoid

sigmoid

Image: 28 (height) × 28 (width) × 1 (channel)

Convolution with 5×5 kernel+2padding:28×28×6

Convolution with 5×5 kernel (no pad): 10×10×16

Pool with 2×2 average kernel+2 stride: 14×14×6

Pool with 2×2 average kernel+2 stride: 5×5×16

Dense: 120 fully connected neurons

Dense: 84 fully connected neurons

Dense: 10 fully connected neurons

AlexNet

Output: 1 of 1000 classes

ReLu

ReLu

ReLu

ReLu

ReLu

flatten

ReLu, dropout p=0.5

ReLu, dropout p=0.5

Image: 224 (height) × 224 (width) × 3 (channels)

Convolution with 11×11 kernel+4 stride:54×54×96

Pool with 3×3 max. kernel+2 stride: 26×26×96

Convolution with 5×5 kernel+2 pad:26×26×256

Pool with 3×3 max. kernel+2 stride: 12×12×256

Convolution with 3×3 kernel+1 pad:12×12×384

Convolution with 3×3 kernel+1 pad:12×12×384

Convolution with 3×3 kernel+1 pad:12×12×256

Pool with 3×3 max. kernel+2 stride: 5×5×256

Dense: 4096 fully connected neurons

Dense: 4096 fully connected neurons

Dense: 1000 fully connected neurons

source: wiki

6LeCun, Y. et al. (1998) “Gradient-Based Learning Applied to Document Recognition”, Proceedings of the IEEE 86, no. 11
7Krizhevsky, Alex, et al. (2012) “ImageNet Classification with Deep Convolutional Neural Networks”, Proceedings of the 25th NeurIPS Conference
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3. CNN building blocs

3.1. Building blocs (overview)

Building blocs (overview) of a CNN

⇒ consider 2 milestones CNN architectures: LeNet-5 (LeCun et al. 1998) and AlexNet (Krizhevsky et al. 2012)

LeNet

Output: 1 of 10 classes

flatten

sigmoid

sigmoid

sigmoid

sigmoid

Image: 28 (height) × 28 (width) × 1 (channel)

Convolution with 5×5 kernel+2padding:28×28×6

Convolution with 5×5 kernel (no pad): 10×10×16

Pool with 2×2 average kernel+2 stride: 14×14×6

Pool with 2×2 average kernel+2 stride: 5×5×16

Dense: 120 fully connected neurons

Dense: 84 fully connected neurons

Dense: 10 fully connected neurons

AlexNet

Output: 1 of 1000 classes

ReLu

ReLu

ReLu

ReLu

ReLu

flatten

ReLu, dropout p=0.5

ReLu, dropout p=0.5

Image: 224 (height) × 224 (width) × 3 (channels)

Convolution with 11×11 kernel+4 stride:54×54×96

Pool with 3×3 max. kernel+2 stride: 26×26×96

Convolution with 5×5 kernel+2 pad:26×26×256

Pool with 3×3 max. kernel+2 stride: 12×12×256

Convolution with 3×3 kernel+1 pad:12×12×384

Convolution with 3×3 kernel+1 pad:12×12×384

Convolution with 3×3 kernel+1 pad:12×12×256

Pool with 3×3 max. kernel+2 stride: 5×5×256

Dense: 4096 fully connected neurons

Dense: 4096 fully connected neurons

Dense: 1000 fully connected neurons

• convolutional layers ⇒ extract features
→ receptive field, filter kernel/depth,
feature maps, padding, stride

• pooling layers ⇒ downsample
→ pooling kernel, stride

• dense layers ⇒ classify
→ fully connected layers

• activation function ⇒ achieve
non-linearity
→ sigmoid, ReLu, ...

• flatten layer ⇒ matrix/tensor to vector

• dropout layer ⇒ prevent overfitting
(regularization)
→ in the fully connected layers
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3. CNN building blocs

3.1. Building blocs (overview)

Building blocs (overview) of a CNN

⇒ illustration of the building blocs of convolutional networks

Convolution layer
feature maps
(24×24×10)

Pooling layerInput
(28 × 28)

0.18
0.002
0.62

0.008

0.2
0.01

Feature learning Classication

softmax

fully connected layers

feature maps
(12×12×10)

Convolution layer
feature maps

(8×8×20)

Pooling layer
feature maps

(4×4×20)

Receptive
Field

10 filters 20 filters

10 classes

Convolution
(5×5 kernel)

Convolution
(5×5 kernel)

Pooling
(2×2)

Pooling
(2×2)

flattening

Modified after: Elgendy (2020)
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3. CNN building blocs

3.2. Convolutional layer

CONV Convolutional layer

⇒ convolution: reminder of Lecture 03 (filtering)

Source
pixel

Receptive
field Destination pixel

Convolved image

Input im
age

Convolution
filter (3×3)
a.k.a. kernel

Modified after: Elgendy (2020)

• filter kernel = matrix of weights applied to extract
features from the input
⇒ weights are learned by CNN during training!
⇒ hyperparameters to be set:

- size (3×3, 5×5, ...)
- depth (number of filters)

• destination pixel = weighted sum of pixel-values in
the receptive field and the filter-weights

• receptive field = area of the image that the filter
convolves

NB: strictly speaking, convolutional layers actually use cross-correlations, which are very similar to convolutions
18 / 59



3. CNN building blocs

3.2. Convolutional layer

CONV Convolutional layer

⇒ convolution: reminder of Lecture 03 (filtering)

Convolved image
a.k.a. feature map
a.k.a. activation map

zero-padding
pad=1

stride
(sliding step)

⇒ The filter slides over the entire image

• stride = sliding step
⇒ hyperparameter to be set

• zero-padding = add zeros around the input image to
keep output the same size
⇒ hyperparameter to be set

• feature map (a.k.a. activation map) = convolved
image

19 / 59



3. CNN building blocs

3.2. Convolutional layer

CONV Convolutional layer
⇒ What’s different with respect to Lecture 03?

→ in CNNs, the filter weights are randomly initialized and the values are learned by the network
→ in doing so, the network learns to extract useful features from the image

⇒ Example: image modified by 2 possible filters
→ vertical filter (7×7 matrix of 0s with 1s in central column) ⇒ vertical lines get enhanced

(since all inputs in the receptive field are multiplied by 0, except for those in the central vertical line)
→ horizontal filter (7×7 matrix of 0s with 1s in central row) ⇒ horizontal lines get enhanced

From: Géron (2022)
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3. CNN building blocs

3.2. Convolutional layer

CONV Convolutional layer

⇒ stacking convolutional layers allows the network to learn progressively learn more complex features

EX: simplified version of how CNNs learn faces
→ 1st layer learns basic features (lines & edges)
→ 2nd layer assembles those into recognizable shapes (corners & circles)
→ deeper layers learn more complex shapes such (eyes, ears, etc.)

Low-level
feature

Mid-level
feature

High-level
feature

Modified after: Elgendy (2020)
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3. CNN building blocs

3.2. Convolutional layer

CONV Convolutional layer

⇒ each convolutional layer usually has >1 filters!
NB: increasing the number of filters in a hidden convolutional layer of a CNN, is equivalent to increasing the
number of neurons in a hidden fully-connected layer of a MLP (3x3 kernel = 9 neurons)

W1

b1

b2

feature map(8 x 8 x 2)

filters(3 x 3 x 2)= 18+2 parameters

input image(8 x 8 x 1)

5

W2

5
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3. CNN building blocs

3.2. Convolutional layer

CONV Convolutional layer
⇒ what if we are handling 1 filter, but input image with > 1 channel (e.g. RGB)?

Modified after: Elgendy (2020) 24 / 59



3. CNN building blocs

3.2. Convolutional layer

CONV Convolutional layer
⇒ what if we are handling > 1 filter with input image having > 1 channel (e.g. RGB)?

Modified after: Elgendy (2020)
See animation at: stanford.edu 25 / 59
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3. CNN building blocs

3.2. Convolutional layer

CONV Convolutional layer

⇒ the output size of the feature map is determined by the following formula:

output size = W − F + 2P
S + 1

where:


W input size
F filter size
P padding
S stride

EX: input size W=7x7, filter size F=3x3, pad=0, stride S=1 ⇒ output size = 5x5

26 / 59



3. CNN building blocs

3.2. Convolutional layer

Activation function

⇒ similar to what we saw for MLPs, activation functions are used to introduce non-linearity in the network
NB: a convolutional layer performs a linear operation, so stacking multiple convolutional layers without any
activation functions would be equivalent to a single convolutional layer, unable to learn anything complex

⇒ most common activation function is ReLU (Rectified Linear Unit): f (x) = max(0, x)
NB: ReLU is preferred because of its computational efficiency and its ability to avoid the vanishing gradient problem

convolution output

input

-1.2

2.6

-0.8
1.1

3.4

-4.1
2.1

-2.4

0.4

kernel

0

2.6

0 1.1

3.4

0 2.1

0

0.4

ReLu

f(x) = max(0, x)
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3. CNN building blocs

3.2. Convolutional layer

Convolutional layer

⇒ final comments on the advantages of convolutional layers with respect to fully-connected layers:
• neurons in the first convolutional layer are not connected to every single pixel in the input image, but

only to pixels in their receptive fields
⇒ this allows the network to extract small low-level features in the first hidden layer, then assemble them
into larger higher-level features in the next hidden layers

• all neurons in a feature map share the same parameters, which dramatically reduces the number of
parameters in the model
⇒ once the CNN has learned to recognize a pattern in one location, it can recognize it in any other location.
In contrast, once a fully connected neural network has learned to recognize a pattern in one location, it can
recognize it in that particular location
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3. CNN building blocs

3.3. Pooling layer

POOL Pooling layer (subsampling)
⇒ increasing the number of convolutional layers increases the number of parameters to be learned

⇒ pooling layers are used to reduce (subsample) the spatial dimensions of the feature map while keeping
the most important information. Types of pooling layers: max pooling and average pooling

EX: 3×3 max pooling filter with stride=3, reducing the feature map from 9×9 to 3×3
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⇒ changing the stride will change the size of the feature map
stride = 1 stride = 2 stride = 3
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3. CNN building blocs

3.3. Pooling layer
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⇒ changing the stride will change the size of the feature map
stride = 1 stride = 2 stride = 3
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3. CNN building blocs

3.3. Pooling layer

POOL Pooling layer (subsampling)

⇒ pooling layers reduce image resolution while keeping the image’s important features
(think of it as an image-compressing program)

From: Elgendy (2020)

Convolution

Convolution

Convolution

Pooling

Pooling
Pooling Fully

connected

NB: stride during convolution also allow to reduce the size of the feature map; many authors have suggested that
pooling operations could be removed in favor of adjusting stride/padding in the convolutional layer.
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3. CNN building blocs

3.4. Flatten layer

Flatten layer

⇒ Flattening is used to convert an image matrix (2D) or tensor (n·2D) into a vector (1D)
NB: during the flatenning process, the 2D information is entirely lost.

Row 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Row 2

1 2 3 4

Flattening
Row 1

5 6 7 8Row 2

9 10 11 12

13 14 15 16

Modified after: Elgendy (2020)

⇒ Where are the flatten layers?
→ in MLPs, the input image is flattened into a vector and parsed to the FC layers for classification
→ in CNNs, the feature maps (learned in the convolutional layers CONV) are flattened, and the feature vector is

fed to the FC layers for classification
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3. CNN building blocs

3.5. Dropout layer

Dropout layer (regularization)

⇒ Dropout is a popular regularization technique used to prevent overfitting of deep neural networks
→ dropout layers are introduced between the fully connected layers (at the end of the network architecture)

AlexNet

Output: 1 of 1000 classes

ReLu

ReLu

ReLu

ReLu

ReLu

flatten

ReLu, dropout p=0.5

ReLu, dropout p=0.5

Image: 224 (height) × 224 (width) × 3 (channels)

Convolution with 11×11 kernel+4 stride:54×54×96

Pool with 3×3 max. kernel+2 stride: 26×26×96

Convolution with 5×5 kernel+2 pad:26×26×256

Pool with 3×3 max. kernel+2 stride: 12×12×256

Convolution with 3×3 kernel+1 pad:12×12×384

Convolution with 3×3 kernel+1 pad:12×12×384

Convolution with 3×3 kernel+1 pad:12×12×256

Pool with 3×3 max. kernel+2 stride: 5×5×256

Dense: 4096 fully connected neurons

Dense: 4096 fully connected neurons

Dense: 1000 fully connected neurons
dropout

dropout

→ dropout randomly “turns off” a percentage of neurons (nodes) making up a layer of the network
⇒ these neurons are not included in the forward or backward pass

Dropout

From: Elgendy (2020)

→ this forces all nodes to learn without relying specific nodes (since they can be dropped at any point)
⇒ spreads out the weights among all neurons (avoiding neurons to become too “strong” or too “weak”)
⇒ makes the network more resilient (less dependent on specific nodes)
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3. CNN building blocs

3.5. Dropout layer

Dropout layer (regularization)
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3. CNN building blocs

3.6. Summary (cheat-sheet)

Summary (cheat-sheet)

(houtxhout)xK

v0 = Σ(xijwij) + b0

filter 1
(W0)

Convolutional layer

activation function (ReLu)

⇨ reduces dimentionality (for memory issue)

⇨ enables network to see image at large scale

⇨ applies threshold

⇨ 1 filter applies a convolution between filter-weights and pixel-values in the receptive field (multiply each pixel by corresponding weight and summing gives the center pixel value in new image)

⇨ convolution layer = K filters
ze

ro
-p

a
d

d
in

g
 P

receptive field F
= (filter size)

 
 
v0 = V[0,0,0] = np.sum(X[:3,:3,:] * W0) + b0
v1 = V[1,0,0] = np.sum(X[2:5,2:5,:] * W0) + b0

OUTPUT V

hout=((hin−F+2P)/S)+1

INPUT X

x2 x1

str
ide S

x0

= K filters = 2
depth K

w0

(hinxhin)xdin

b0

d=1

3

EXAMPLE:

0
0

0

0

0

Filter kernel:
depth K=2 (W0 & W1), size F=3, stride S=1
=> W0.shape = (F,F,din) = (3,3,3)
=> W0 weights = F*F*din = 33 = 27, W0 bias = 1

Output volume: 
hout = ((hin−F+2P)/S)+1 = (5-3+0)/1+1 = 3 
=> V.shape = (3x3)x2

w1w2

filter 2
(W1)

v0
F=3

S=2

Input volume:
size hin=5, din=3, zero-padding P=0
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hout=((h−F)/S)+1

P=(F−1)/2 used
to preserve input size

Hyperparameters
 
- receptive field (F) 
    = filter size
     NB: usually an odd number, so that it is centered on a central pixel 
 

- depth (K) 
    = number of filters
     NB: depth column = set of neurons that are all looking at the same region of the input
 

- stride (S) 
    = number of pixels the filter slides across the image at each step
     EX: stride 2 => filter moves 2 pix at a time => produces smaller outputs 
 

-  zero-padding (P) 
    = pad the input volume with zeros around the border
 
-  dropout rate (p) 
    = percentage of the input units to drop
 
NB: hyper-parameters control the output volume size: 
      width & height = ((W−F+2P)/S) +1     where W = input width/height
      depth = K
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4. Transfer learning

4.1. ImageNet & ILSVRC

Data is key

⇒ the deeper the network, the more powerful it can be, but the more data it needs to be trained

⇒ ImageNet dataset: large-scale image dataset with 1.2 million images and 1,000 classes (ImageNet)
→ Deng, J. et al. (2009) ImageNet: A Large-Scale Hierarchical Image Database. CVPR

⇒ ILSVRC competition: “ImageNet Large Scale Visual Recognition Competition”
→ compitition held between 2010-2017 using ImageNet as benchmark for image classification & segmentation
tasks → several CNN architectures have been developed to win the competition
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4. Transfer learning

4.1. ImageNet & ILSVRC

ILSVRC competition

⇒ CNN networks having won the ILSVRC competition:

⇒ performance comes with a computational cost!

Image credit: Z. Alyafeai, L. Ghouti

From: Cansiani et al. (2017)
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4. Transfer learning

4.2. Famous CNN architectures

Most famous CNN architectures

⇒ most famous CNN networks achieving very good performances on the ImageNet dataset:
• LeNet-5 (1998)
• AlexNet (2012)
• GoogLeNet (2014)
• ResNet (2015)
• Xception (2016)
• SENet (2017)

⇒ explanation of the differences in architectures is beyond the scope of this lecture
→ see e.g. “Mohamed Elgendy (2020) Deep Learning for Vision Systems (Manning Editions)”
→ see e.g. “Aurélien Géron (2022) Hands-On Machine Learning (O’Reilly Editions)”
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4. Transfer learning

4.3. Transfer learning using pretrained CNNs

Transfer learning using pretrained CNNs

⇒ desining and training your own network from scratch can be difficult (or impossible without enough data)
→ training “from scratch” means the model starts with zero knowledge, i.e. with random initialization of weights

⇒ transfer learning allows to fine-tune a pretrained model
→ a pretrained model is a network that has been previously trained on a large dataset, typically on a large-scale image classification task
→ fine-tuning means starting from a pretrained model, then retraining parts of the model on a new dataset to adapt the model to the new task

⇒ EX: suppose we want to train a model that classifies images in 2 categories (e.g. bananas and apples)
→ instead of collecting hundreds of thousands of images for each class, labeling them, and training a network from scratch, we can applying transfer

learning to a VGG16 network
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5. Application

5.1. from MLP to CNN

Last week: MLP for MNIST-fashion dataset classification task
import tensorflow as tf

# Load data
fashion_mnist = tf.keras.datasets.fashion_mnist

(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist.load_data()
X_valid, X_train = X_train_full[:5000], X_train_full[5000:]
y_valid, y_train = y_train_full[:5000], y_train_full[5000:]

# Preprocess data
X_train, X_test, X_valid = X_train/255.0, X_test/255.0, X_valid/255.0

# Build model (using the Sequential API)
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=[28, 28]),
    tf.keras.layers.Dense(300, activation="relu"),
    tf.keras.layers.Dense(100, activation="relu"),
    tf.keras.layers.Dense(10, activation="softmax")
])
model.summary()

# Compile model
model.compile(loss="sparse_categorical_crossentropy",
              optimizer="sgd",
              metrics=["accuracy"])

# Train model
history = model.fit(X_train, y_train, validation_data=(X_valid, y_valid),
                    epochs=30, # nb of times X_train is seen seen
                    batch_size=32) # nb of images per training instance
print('training instances per epoch = {}'.format(X_train.shape[0] / 32))

# Plot training history
import pandas as pd
pd.DataFrame(history.history).plot()

# Evaluate model
test_loss, test_acc = model.evaluate(X_test,  y_test)
print('Test accuracy:', test_acc)

# Predict

img = X_test[0,:,:] 
img = (np.expand_dims(img,0)) # add image to a batch
y_proba = model.predict(img).round(2)
y_pred = np.argmax(model.predict(img), axis=-1)

plt.bar(range(10), y_proba[0])
plt.imshow(img[0,:,:], cmap='binary')
plt.title('class {} = {}'.format(y_pred, class_names[np.argmax(y_proba)]))

1.1 Load data
- training dataset
- validation dataset
- test dataset

1.2 Preprocess data
- scale pixel intensities to 0–1

2.1 Build model
- set layer type/order

2.2 Compile model
- set loss function
- set optimizer
- set metrics

3. Train model
- learn layer parameters (weights/biases)
- plot training history (check for overfitting)

4. Evaluate model
- evaluate accuracy on test dataset

5. Predict from model
- predict image class using learned model

MLP are powerful, but break for large images due to the huge amount of parameters to optimize
EX1: simple model above on the simple MNIST-fashion dataset (28x28 pix) ⇒ 266,610 parameters

EX2: 100x100 image = 10,000 pixels, with first hidden layer having 1,000 neurons (which is already very restrictive)
⇒ 10,000 x 1,000 = 10 million connections, only for the first layer!
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5. Application

5.1. from MLP to CNN

This week: CNN for MNIST-fashion dataset classification task

# Build model (MLP)
model = tf.keras.models.Sequential([

tf.keras.layers.Flatten(input_shape=[28, 28]),
tf.keras.layers.Dense(300, activation="relu"),
tf.keras.layers.Dense(100, activation="relu"),
tf.keras.layers.Dense(10, activation="softmax")

])

# Build model (CNN)
model = tf.keras.models.Sequential([

tf.keras.layers.Conv2D(64, 7, activation="relu", padding="same", input_shape=[28, 28, 1]),
tf.keras.layers.MaxPooling2D(2),
tf.keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
tf.keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
tf.keras.layers.MaxPooling2D(2),
tf.keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
tf.keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
tf.keras.layers.MaxPooling2D(2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(64, activation="relu"),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(10, activation="softmax")

])
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5. Application

Application

TensorBoard: TensorFlow’s visualization toolkit
⇒ TensorBoard provides the visualization and tooling needed for machine learning experimentation:

• Tracking and visualizing metrics such as loss and accuracy
• Visualizing the model graph (ops and layers)
• Viewing histograms of weights, biases
• etc.

54 / 59

https://www.tensorflow.org/tutorials/keras/classification


5. Application

5.2. using TensorBoard

TensorBoard: TensorFlow’s visualization toolkit
⇒ TensorBoard is installed during the TensorFlow conda installation

⇒ To use it, you should:

1. Add the tf.keras.callbacks.TensorBoard callback to the Keras Model.fit() method (ensures that logs are created and stored)
# Create callback
import datetime
log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)

# Add callback to model.fit()
history = model.fit(X_train, y_train, callbacks=[tensorboard_callback])

2. Run TensorBoard from command line
$ conda activate tf
$ cd <working dir>
$ tensorboard --logdir logs/fit # set directory used to store logs

3. Open a web-browser to the address
http://localhost:6006/

Nota Bene: you can open it directly from a Jupyter cell (after training has finished however) as follows:
%load_ext tensorboard # Load the TensorBoard notebook extension
%tensorboard --logdir logs # Open TensorBoard in cell
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%load_ext tensorboard # Load the TensorBoard notebook extension
%tensorboard --logdir logs # Open TensorBoard in cell
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5. Application

5.2. using TensorBoard
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$ tensorboard --logdir logs/fit # set directory used to store logs

3. Open a web-browser to the address
http://localhost:6006/

Nota Bene: you can open it directly from a Jupyter cell (after training has finished however) as follows:
%load_ext tensorboard # Load the TensorBoard notebook extension
%tensorboard --logdir logs # Open TensorBoard in cell
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