Lecture 02 Digital Image Basics

2024-08-21

Sébastien Valade

- 1. [Why Computer Vision for Geosciences?](#page-2-0)
- 2. [Computer Vision processing levels](#page-12-0)
- 2. [What is a digital image?](#page-18-0)
- 3. [Point operations](#page-51-0)
- 4. [Image manipulation with Python](#page-66-0)

1.1. Why Computer Vision for Geosciences?

Computer Vision for Geosciences (CV4GS)

Computer Vision for Geosciences (CV4GS)

- **What is Computer Vision?**
	- \Rightarrow discipline focused on enabling computers to acquire, process, and interpret visual data, primarily from digital images or video

1.1. Why Computer Vision for Geosciences?

Computer Vision for Geosciences (CV4GS)

• **Sources of images for geosciences applications?**

 \Rightarrow images can be derived from different imaging techniques at different scales

1.1. Why Computer Vision for Geosciences?

Computer Vision for Geosciences (CV4GS)

• **Sources of images for geosciences applications?**

 \Rightarrow images can be constructed using different wavelengths spanning the entire electromagnetic spectra

1.1. Why Computer Vision for Geosciences?

UV camera

Popocatépetl 2013-01-29 (UV camera, [Campion et al. 2018\)](https://doi.org/10.3389/feart.2018.00163)

UV satellite

Popocatépetl 2019-02-17 (Sentinel-5P, [MOUNTS\)](http://www.mounts-project.com/timeseries/341090)

1.1. Why Computer Vision for Geosciences?

IR camera

Nyiragongo 2016-04-16 (FLIR image, [Valade et al. 2018\)](https://www.sciencedirect.com/science/article/pii/S0012821X18304631)

IR satellite

Etna 2021-02-23 (Sentinel-2 image, [MOUNTS\)](http://www.mounts-project.com/timeseries/211060)

1.1. Why Computer Vision for Geosciences?

SAR satellite

Popocatépetl SAR 2021-12-25 (Sentinel-1, [MOUNTS\)](http://www.mounts-project.com/timeseries/341090)

InSAR satellite

Popocatépetl InSAR interferogram 2021-12-25 dt=6 days [\(MOUNTS\)](http://www.mounts-project.com/timeseries/341090)

1.1. Why Computer Vision for Geosciences?

 $700 (nm)$

Wavelength, λ (m)

telescope

Low-energy X-ray (Chandra)

Visible light (Hubble)

High-energy X-ray (HEFT) "" 15 min exposure ""

1.1. Why Computer Vision for Geosciences?

Pixel Size ÷

High-energy X-ray (HEFT)
*** 15 min exposure ***

Low-energy X-ray (Chandra) [Crab Nebula](https://www.constellation-guide.com/crab-nebula-messier-1/) - remanent of an exploded star (supernova) 11 / 69

Ultraviolet radiation (Astro-1)

1.1. Why Computer Vision for Geosciences?

[Crab Nebula](https://www.constellation-guide.com/crab-nebula-messier-1/) - remanent of an exploded star (supernova) 12 / 69

From image acquisition to image processing:

["Computer Vision](https://en.wikipedia.org/wiki/Computer_vision) tasks include methods for **acquiring, processing, analyzing** and understanding digital images, and ex-
traction of high-dimensional data from the real world in order to produce numerical or symbolic inform forms of decisions".

Examples of processing levels:

- Low-level processing
	- image manipulation \Rightarrow resizing, color adjustments, filtering, etc.
	- feature extraction \Rightarrow edges, gradients, etc.
- Mid-level processing
	- panorama stitching
	- Structure from Motion (SfM) ⇒ 2D to 3D
	- Optical Flow ⇒ velocities
- High-level processing
	- classification \Rightarrow what is in the image?
	- detection \Rightarrow where are they?
	- segmentation (semantic or instance) \Rightarrow segment image

Examples of processing levels:

- Low-level processing
	- image manipulation \Rightarrow resizing, color adjustments, filtering, etc.
	- feature extraction \Rightarrow edges, gradients, etc.
- Mid-level processing
	- panorama stitching
	- Structure from Motion (SfM) ⇒ 2D to 3D
	- Optical Flow ⇒ velocities
- High-level processing
	- classification \Rightarrow what is in the image?
	- detection \Rightarrow where are they?
	- segmentation (semantic or instance) \Rightarrow segment image

1.2. Computer Vision processing levels

Examples of processing levels:

- Low-level processing
	- image manipulation \Rightarrow resizing, color adjustments, filtering, etc.
	- feature extraction \Rightarrow edges, gradients, etc.
- Mid-level processing
	- panorama stitching
	- Structure from Motion (SfM) ⇒ 2D to 3D
	- Optical Flow ⇒ velocities
- High-level processing
	- classification \Rightarrow what is in the image?
	- detection \Rightarrow where are they?
	- segmentation (semantic or instance) \Rightarrow segment image

Optical Flow (Farneback)

Examples of processing levels:

- Low-level processing
	- image manipulation \Rightarrow resizing, color adjustments, filtering, etc.
	- feature extraction \Rightarrow edges, gradients, etc.
- Mid-level processing
	- panorama stitching
	- Structure from Motion (SfM) ⇒ 2D to 3D
	- Optical Flow ⇒ velocities
- High-level processing
	- classification \Rightarrow what is in the image?
	- detection \Rightarrow where are they?
	- segmentation (semantic or instance) \Rightarrow segment image and give names

Credit: cloudfactory

Examples of processing levels:

- Low-level processing
	- image manipulation \Rightarrow resizing, color adjustments, filtering, etc.
	- feature extraction \Rightarrow edges, gradients, etc.
- Mid-level processing
	- panorama stitching
	- Structure from Motion (SfM) ⇒ 2D to 3D
	- Optical Flow ⇒ velocities
- High-level processing
	- classification \Rightarrow what is in the image?
	- detection \Rightarrow where are they?
	- segmentation (semantic or instance) \Rightarrow segment image and give names

2. [What is a digital image?](#page-18-0)

- 1. [image acquisition](#page-19-0)
- 2. [sampling and quantization](#page-23-0)
- 3. [3D projection on 2D plane](#page-27-0)
- 4. [color image](#page-34-0)
- 5. [color spaces](#page-41-0)
- 6. [image histogram](#page-48-0)
- 3. [Point operations](#page-51-0)
- 4. [Image manipulation with Python](#page-66-0)

1. energy from an **illumination source** is reflected from a **scene**

- 2. the **imaging system** collects the incoming energy and focuses it onto an **image plane** NB: light-sensing instruments typically use 2-D arrays of photosensors to record incoming light intensity I(x): the CCD (Charge-Coupled Device)
- 3. the image plane is sampled and quantized to produce a **digital image**

- 1. energy from an **illumination source** is reflected from a **scene**
- 2. the **imaging system** collects the incoming energy and focuses it onto an **image plane**
	- NB: light-sensing instruments typically use 2-D arrays of photosensors to record incoming light intensity I(x): the CCD (Charge-Coupled Device)
- 3. the image plane is sampled and quantized to produce a **digital image**

- 1. energy from an **illumination source** is reflected from a **scene**
- 2. the **imaging system** collects the incoming energy and focuses it onto an **image plane** NB: light-sensing instruments typically use 2-D arrays of photosensors to record incoming light intensity
	- I(x): the CCD (Charge-Coupled Device)

3. the image plane is sampled and quantized to produce a **digital image**

- 1. energy from an **illumination source** is reflected from a **scene**
- 2. the **imaging system** collects the incoming energy and focuses it onto an **image plane** NB: light-sensing instruments typically use 2-D arrays of photosensors to record incoming light intensity
	- I(x): the CCD (Charge-Coupled Device)
- 3. the image plane is sampled and quantized to produce a **digital image**

Credit: Gonzalez & Woods 2018

2.2. sampling and quantization

• each photosensor records incident light

- digitalization of an analog signal involves two operations
	- **spatial sampling** (= discretization of space domain)
	- **intensity quantization** (= discretization of incoming light signal)

2.2. sampling and quantization

- each photosensor records incident light
- digitalization of an analog signal involves two operations
	- **spatial sampling** $(=$ discretization of space domain)
	- $\overline{\mathbf{intensity}}$ **quantization** (= discretization of incoming light signal)

2.2. sampling and quantization

spatial sampling $(=$ discretization of space domain)

 \Rightarrow smallest element resulting from the discretization of the space is called a pixel (=picture element)

 $(512, 512)$

 $(64, 64)$

intensity quantization (= discretization of light intensity signal)

 \Rightarrow typically, 256 levels (8 bits/pixel $=2^8$ values) suffices to represent the intensity

 $2^2 = 4$ gray levels

 $2^1 = 2$ gray levels

2.2. sampling and quantization

spatial sampling $($ = discretization of space domain)

 \Rightarrow smallest element resulting from the discretization of the space is called a pixel (=picture element)

 $(512, 512)$

 $(128, 128)$

 $(64, 64)$

 $(32, 32)$

intensity quantization ($=$ discretization of light intensity signal)

 \Rightarrow typically, 256 levels (8 bits/pixel $=2^8$ values) suffices to represent the intensity

3.hit resolution $2^3 = 8$ grav levels

2.hit resolution $2^2 = 4$ gray levels.

1.bit resolution $2^1 = 2$ gray levels

2.3. 3D projection on 2D plane

But how is the 3D world projected on a 2D plane? \Rightarrow comparison between human eye and pinhole camera:

In 1514, Leonardo da Vinci explained: "By letting the images of illuminated objects penetrate through a small hole into a very dark room, you will then intercept these images on a white sheet of paper placed in this room. [...] but they will be smaller and reversed".

2.3. 3D projection on 2D plane

$Image = 3D$ world projection on 2D

⇒ projection using the **pinhole camera** model:

Perspective transformation:

$$
s \ m' = K[R|t]M'
$$
(1)

$$
\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_X & 0 & u_0 \\ 0 & f_Y & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}
$$
(2)

s

- $M' = 3D$ point in space with coordinates $[X, Y, Z]^T$ expressed in
- m' = projection of the 3D point M' onto the image plane with
- $K =$ camera calibration matrix (a.k.a instrinsics parameters matrix)
	- f_x , f_y = focal lengths expressed in pixel units
	- \bullet u_0, v_0 = coordinates of the optical center (aka principal
-

2.3. 3D projection on 2D plane

$Image = 3D$ world projection on 2D

⇒ projection using the **pinhole camera** model:

Perspective transformation:

$$
s \, m' = K[R|t]M'
$$
 (1)

$$
s\begin{bmatrix}u\\v\\1\end{bmatrix}=\begin{bmatrix}f_x&0&u_0\\0&f_y&v_0\\0&0&1\end{bmatrix}\begin{bmatrix}r_{11}&r_{12}&r_{13}&t_1\\r_{21}&r_{22}&r_{23}&t_2\\r_{31}&r_{32}&r_{33}&t_3\end{bmatrix}\begin{bmatrix}X\\Y\\Z\\1\end{bmatrix}
$$
(2)

where:

- $M' = 3D$ point in space with coordinates $[X, Y, Z]^T$ expressed in Euclidean coordinates
- m' = projection of the 3D point M' onto the image plane with coordinates $[u, v]^T$ expressed in pixel units
- $K =$ camera calibration matrix (a.k.a instrinsics parameters matrix)
	- f_x , f_y = focal lengths expressed in pixel units
	- \bullet u_0, v_0 = coordinates of the optical center (aka principal
-

2.3. 3D projection on 2D plane

$Image = 3D$ world projection on 2D

⇒ projection using the **pinhole camera** model:

Perspective transformation:

$$
s \, m' = K[R|t]M'
$$
 (1)

$$
s\begin{bmatrix}u\\v\\1\end{bmatrix}=\begin{bmatrix}f_x&0&u_0\\0&f_y&v_0\\0&0&1\end{bmatrix}\begin{bmatrix}r_{11}&r_{12}&r_{13}&t_1\\r_{21}&r_{22}&r_{23}&t_2\\r_{31}&r_{32}&r_{33}&t_3\end{bmatrix}\begin{bmatrix}X\\Y\\Z\\1\end{bmatrix}
$$
(2)

where:

- $M' = 3D$ point in space with coordinates $[X, Y, Z]^T$ expressed in Euclidean coordinates
- m' = projection of the 3D point M' onto the image plane with coordinates $[u, v]^T$ expressed in pixel units
- $K =$ camera calibration matrix (a.k.a instrinsics parameters matrix)
	- f_X , f_Y = focal lengths expressed in pixel units
	- u_0 , v_0 = coordinates of the optical center (aka principal point), origin in the image plane
-

2.3. 3D projection on 2D plane

$Image = 3D$ world projection on 2D

⇒ projection using the **pinhole camera** model:

Perspective transformation:

$$
s \, m' = K[R|t]M'
$$
 (1)

$$
s\begin{bmatrix}u\\v\\1\end{bmatrix}=\begin{bmatrix}f_x&0&u_0\\0&f_y&v_0\\0&0&1\end{bmatrix}\begin{bmatrix}r_{11}&r_{12}&r_{13}&t_1\\r_{21}&r_{22}&r_{23}&t_2\\r_{31}&r_{32}&r_{33}&t_3\end{bmatrix}\begin{bmatrix}X\\Y\\Z\\1\end{bmatrix}
$$
(2)

where:

- $M' = 3D$ point in space with coordinates $[X, Y, Z]^T$ expressed in Euclidean coordinates
- m' = projection of the 3D point M' onto the image plane with coordinates $[u, v]^T$ expressed in pixel units
- $K =$ camera calibration matrix (a.k.a instrinsics parameters matrix)
	- $f_X, f_Y =$ focal lengths expressed in pixel units
	- u_0, v_0 = coordinates of the optical center (aka principal point), origin in the image plane
- $[R|t] =$ joint rotation-translation matrix (a.k.a. extrinsics parameters matrix), describing the camera pose, and translating from world coordinates to camera coordinates

 \Rightarrow digital image function $f(x, y)$

\Rightarrow digital image function $f(x, y)$

Typical ranges:

• $uint8 = [0-255]$ (0=black, 255=white) (8 bits $= 1$ byte $= 2⁸ = 256$ values per pixel)

\n- float32 = [0-1]
$$
(0 = \text{black}, 1 = \text{white})
$$
\n- (32 bits = 4 bytes = 4.3e9 values per pixel)
\n

2.4. color image

How do we record colors?

⇒ **Bayer Filter**: color filter array for arranging RGB color filters on a square grid of photosensors

<u>NB</u>: notice the filter pattern is 1/2 green, 1/4 red and 1/4 blue ⇒ more green photosensors are used in order to mimic \overline{the} physiology of the human eye, which is more sensitive to green light.

How do we record colors?

⇒ **Bayer Filter**: color filter array for arranging RGB color filters on a square grid of photosensors

1. Original scene

- 2. Output of a 120×80 -pixel sensor with a Bayer filter
- 3. Output color-coded with Bayer filter colors
- 4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
- 5. Full RGB version at 120×80 -pixels for comparison

How do we record colors?

⇒ **Bayer Filter**: color filter array for arranging RGB color filters on a square grid of photosensors

- 1. Original scene
- 2. Output of a 120×80 -pixel sensor with a Bayer filter
- 3. Output color-coded with Bayer filter colors
- 4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
- 5. Full RGB version at 120×80 -pixels for comparison

How do we record colors?

⇒ **Bayer Filter**: color filter array for arranging RGB color filters on a square grid of photosensors

- 1. Original scene
- 2. Output of a 120×80 -pixel sensor with a Bayer filter
- 3. Output color-coded with Bayer filter colors
- 4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
- 5. Full RGB version at 120×80 -pixels for comparison

How do we record colors?

⇒ **Bayer Filter**: color filter array for arranging RGB color filters on a square grid of photosensors

- 1. Original scene
- 2. Output of a 120×80 -pixel sensor with a Bayer filter
- 3. Output color-coded with Bayer filter colors
- 4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)

5. Full RGB version at 120×80 -pixels for comparison

How do we record colors?

⇒ **Bayer Filter**: color filter array for arranging RGB color filters on a square grid of photosensors

- 1. Original scene
- 2. Output of a 120×80 -pixel sensor with a Bayer filter
- 3. Output color-coded with Bayer filter colors
- 4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
- 5. Full RGB version at 120×80 -pixels for comparison

2.4. color image

 \Rightarrow color image = 3D tensor in colorspace

- $RGB = Red + Green + Blue bands$ (.JPEG)
- $RGBA = Red + Green + Blue + Alpha bands$ (.PNG, .GIF, .BMP, TIFF, .JPEG 2000)

2.5. color spaces

Other ways to represent the color information?

- Hue $(H) = [0-360] \Rightarrow$ shift color
- Saturation $(S) = [0-1] \Rightarrow$ shift intensity
- Value $(V) = [0-1] \Rightarrow$ shift brightness

2.5. color spaces

3D tensor with different information:

RGB colorspace **HSV** colorspace

2.5. color spaces

HSV allows for more intuitive color adjustments:

•more saturation S ⇒ more intense colors

•more value V ⇒ brighter colors

•shift hue H ⇒ shift color

2.5. color spaces

HSV allows for more intuitive color adjustments:

•more saturation S ⇒ more intense colors

•more value V ⇒ brighter colors

value x1.5

•shift hue H ⇒ shift color

2.5. color spaces

HSV allows for more intuitive color adjustments:

•more saturation S ⇒ more intense colors

•more value V ⇒ brighter colors

•shift hue H ⇒ shift color

value x1.5

original

hue x5

2.5. color spaces

Additive vs. Subtractive Color Models:

RGB (Additive Model)

- \Rightarrow used for devices that emit light (monitors, TVs, smartphones)
- \Rightarrow additive model: colors are created by combining different intensities of red, green, and blue light
	- \rightarrow combining all three colors at full intensity results in white light, absence of all results in black

R G

CMYK (Subtractive Model)

- \Rightarrow used for printing on paper and other physical media
- \Rightarrow subtractive color model: colors are created by subtracting light reflected off the

 \rightarrow combining all three colors ideally absorb all light, resulting in *black* (NB: in printers black ink is added to achieve deeper blacks and reduce usage of the

2.5. color spaces

Additive vs. Subtractive Color Models:

RGB (Additive Model)

- \Rightarrow used for devices that emit light (monitors, TVs, smartphones)
- \Rightarrow additive model: colors are created by combining different intensities of red, green, and blue light
	- \rightarrow combining all three colors at full intensity results in white light, absence of all results in black

CMYK (Subtractive Model)

- \Rightarrow used for printing on paper and other physical media
- \Rightarrow subtractive color model: colors are created by subtracting light reflected off the paper

 \rightarrow combining all three colors ideally absorb all light, resulting in *black* (NB: in printers black ink is added to achieve deeper blacks and reduce usage of the other inks)

2.6. image histogram

Histogram of pixel values in each band:

original (uint8)

2.6. image histogram

Histogram of pixel values after conversion from RGB (3-bands) to gray-scale (1-band):

NB: weights are chosen to mimic human perception of red, green and blue: the weight on the green band is larger because the human eye has greater sensitivity to green (the retina contains more photoreceptor cells (cones) that are tuned to detect green light) 50 / 69

gray-scale (uint8)

2.6. image histogram

Histogram of pixel values after conversion to float values (range [0-1])

gray-scale (float)

2. [What is a digital image?](#page-18-0)

3. [Point operations](#page-51-0)

- 1. [homogeneous point operations](#page-53-0)
- 2. [inhomogeneous Point Operations](#page-64-0)
- 4. [Image manipulation with Python](#page-66-0)

Homogeneous Point Operations (does not depend on pixel position)

1. image intensity transformation using standard mathematical operations ([⇒] adjust pixel color 0=black / 1=white)

identity

Homogeneous Point Operations (does not depend on pixel position)

1. image intensity transformation using standard mathematical operations ([⇒] adjust pixel color 0=black / 1=white)

Homogeneous Point Operations (does not depend on pixel position)

1. image intensity transformation using standard mathematical operations ([⇒] adjust pixel color 0=black / 1=white)

Homogeneous Point Operations (does not depend on pixel position)

1. image intensity transformation using standard mathematical operations ([⇒] adjust pixel color 0=black / 1=white)

logarithm

inverse

square root

Homogeneous Point Operations (does not depend on pixel position)

1. image intensity transformation using standard mathematical operations ([⇒] adjust pixel color 0=black / 1=white)

logarithm

inverse

exponential

square root

 $q(x, y) = a \cdot exp(f(x, y) - 1)$

Homogeneous Point Operations (does not depend on pixel position)

1. image intensity transformation using standard mathematical operations ([⇒] adjust pixel color 0=black / 1=white)

59 / 69

Homogeneous Point Operations (does not depend on pixel position)

1. image intensity transformation using Gamma correction (⇒ power-law transformation)

Homogeneous Point Operations (does not depend on pixel position)

2. image contrast adjustment ([⇒] adjust image histogram)

ORIGINAL image low contrast

Ě \sim pixel intensity

Modified after: [skimage-tutorial](https://scikit-image.org/docs/stable/auto_examples/color_exposure/plot_equalize.html)

Original image (no stretch)

- \Rightarrow image pixel intensity values are limited to a narrow range
- \Rightarrow without stretch only a small portion of the full range of possible display levels is used
- \Rightarrow results in a low contrast image

Homogeneous Point Operations (does not depend on pixel position)

2. image contrast adjustment ([⇒] adjust image histogram)

Modified after: [skimage-tutorial](https://scikit-image.org/docs/stable/auto_examples/color_exposure/plot_equalize.html)

Transformed image #1: linear histogram stretching

- \Rightarrow expand range of pixel intensities to stretch across full range of possible values
- \Rightarrow rescale pixel values to a specific range EX: rescale pixel intensities between 2nd and 98th [percentiles](https://en.wikipedia.org/wiki/Percentile) to occupy full 0-1 range

Homogeneous Point Operations (does not depend on pixel position)

2. image contrast adjustment ([⇒] adjust image histogram)

Transformed image #2: histogram equalization

- \Rightarrow expand image pixel values on the basis of their frequency of occurrence (i.e. spreads out the most frequent intensity values)
- \Rightarrow equalized image has a roughly linear cumulative distribution function

Modified after: [skimage-tutorial](https://scikit-image.org/docs/stable/auto_examples/color_exposure/plot_equalize.html)

Homogeneous Point Operations (does not depend on pixel position)

2. image contrast adjustment ([⇒] adjust image histogram)

Transformed image #3: adaptive histogram equalization

- \Rightarrow algorithm "Contrast Limited Adaptive Histogram Equalization" (CLAHE)
- \Rightarrow computes histograms over different regions of the image for local contrast enhancement
- \Rightarrow local details can be enhanced even in regions that are darker or lighter than most of the image

Modified after: [skimage-tutorial](https://scikit-image.org/docs/stable/auto_examples/color_exposure/plot_equalize.html)

Inhomogeneous Point Operations (depends on pixel position)

EX: background detection / change detection

$$
g_i(x, y) = T(f(x, y), x, y) = f_i(x, y) - a(x, y)
$$

Inhomogeneous Point Operations (depends on pixel position)

- 2. [What is a digital image?](#page-18-0)
- 3. [Point operations](#page-51-0)

4. [Image manipulation with Python](#page-66-0)

- 1. [numpy tutorial](#page-67-0)
- 2. [exercises](#page-68-0)

4.1. numpy tutorial

Numpy tutorial:

⇒ Open CV4GS 02 image-basics/CV4GS 02 numpy-tutorial.ipynb

4.2. exercises

Exercices:

⇒ Open CV4GS 02 image-basics/CV4GS 02 exercices.ipynb