
UNAM - Posgrado en Ciencias de la Tierra - Semestre 2025-1

Lecture 02
Digital Image Basics

2024-08-21
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1. Motivation

1. Motivation
1. Why Computer Vision for Geosciences?
2. Computer Vision processing levels

2. What is a digital image?

3. Point operations

4. Image manipulation with Python
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1. Motivation

1.1. Why Computer Vision for Geosciences?

Computer Vision for Geosciences (CV4GS)

• What is Computer Vision?
⇒ discipline focused on enabling computers to acquire, process, and interpret visual data,

primarily from digital images or video

4 / 69



1. Motivation

1.1. Why Computer Vision for Geosciences?

Computer Vision for Geosciences (CV4GS)

• Sources of images for geosciences applications?
⇒ images can be derived from different imaging techniques at different scales

microscope (∼ µm-scale) camera (∼ m-scale) satellite (∼ km-scale)
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1. Motivation

1.1. Why Computer Vision for Geosciences?

Computer Vision for Geosciences (CV4GS)

• Sources of images for geosciences applications?
⇒ images can be constructed using different wavelengths spanning the entire electromagnetic

spectra
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1. Motivation

1.1. Why Computer Vision for Geosciences?

UV camera

Popocatépetl 2013-01-29 (UV camera, Campion et al. 2018)

UV satellite

Popocatépetl 2019-02-17 (Sentinel-5P, MOUNTS)
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1. Motivation

1.1. Why Computer Vision for Geosciences?

IR camera

Nyiragongo 2016-04-16 (FLIR image, Valade et al. 2018)

IR satellite

Etna 2021-02-23 (Sentinel-2 image, MOUNTS)
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https://www.sciencedirect.com/science/article/pii/S0012821X18304631
http://www.mounts-project.com/timeseries/211060


1. Motivation

1.1. Why Computer Vision for Geosciences?

SAR satellite

Popocatépetl SAR 2021-12-25 (Sentinel-1, MOUNTS)

InSAR satellite

Popocatépetl InSAR interferogram 2021-12-25 dt=6 days (MOUNTS)
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1. Motivation

1.1. Why Computer Vision for Geosciences?

telescope

Crab Nebula - remanent of an exploded star (supernova) 10 / 69

https://www.constellation-guide.com/crab-nebula-messier-1/
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1. Motivation

1.2. Computer Vision processing levels

From image acquisition to image processing:

“Computer Vision tasks include methods for acquiring, processing, analyzing and understanding digital images, and ex-
traction of high-dimensional data from the real world in order to produce numerical or symbolic information, e.g., in the
forms of decisions”.
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https://en.wikipedia.org/wiki/Computer_vision


1. Motivation

1.2. Computer Vision processing levels

Examples of processing levels:

• Low-level processing
• image manipulation ⇒ resizing, color adjustments,

filtering, etc.
• feature extraction ⇒ edges, gradients, etc.

• Mid-level processing
• panorama stitching
• Structure from Motion (SfM) ⇒ 2D to 3D
• Optical Flow ⇒ velocities

• High-level processing
• classification ⇒ what is in the image?
• detection ⇒ where are they?
• segmentation (semantic or instance) ⇒ segment image

and give names
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2. Digital Image

1. Motivation

2. What is a digital image?
1. image acquisition
2. sampling and quantization
3. 3D projection on 2D plane
4. color image
5. color spaces
6. image histogram

3. Point operations

4. Image manipulation with Python
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2. Digital Image

2.1. image acquisition

1. energy from an illumination source is reflected from a scene
2. the imaging system collects the incoming energy and focuses it onto an image plane

NB: light-sensing instruments typically use 2-D arrays of photosensors to record incoming light intensity
I(x): the CCD (Charge-Coupled Device)

3. the image plane is sampled and quantized to produce a digital image

Credit: Gonzalez & Woods 2018
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2.1. image acquisition

1. energy from an illumination source is reflected from a scene
2. the imaging system collects the incoming energy and focuses it onto an image plane
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2. Digital Image

2.2. sampling and quantization

• each photosensor records incident light
• digitalization of an analog signal involves two operations

• spatial sampling (= discretization of space domain)
• intensity quantization (= discretization of incoming light signal)
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2. Digital Image

2.2. sampling and quantization

spatial sampling (= discretization of space domain)
⇒ smallest element resulting from the discretization of the space is called a pixel (=picture element)

intensity quantization (= discretization of light intensity signal)
⇒ typically, 256 levels (8 bits/pixel = 28 values) suffices to represent the intensity
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2. Digital Image

2.3. 3D projection on 2D plane

But how is the 3D world projected on a 2D plane?
⇒ comparison between human eye and pinhole camera:

In 1514, Leonardo da Vinci explained: “By letting the images of illuminated objects penetrate through a small hole into a very dark room, you will then intercept
these images on a white sheet of paper placed in this room. [...] but they will be smaller and reversed”.
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2. Digital Image

2.3. 3D projection on 2D plane

Image = 3D world projection on 2D
⇒ projection using the pinhole camera model:

(from PyTorch Geometry)

Perspective transformation:

s m′ = K [R|t]M′ (1)

s

[
u
v
1

]
=

[
fx 0 u0
0 fy v0
0 0 1

][
r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

][
X
Y
Z
1

]
(2)

where:
• M′ = 3D point in space with coordinates [X , Y , Z ]T expressed in

Euclidean coordinates
• m′ = projection of the 3D point M′ onto the image plane with

coordinates [u, v ]T expressed in pixel units

• K = camera calibration matrix (a.k.a instrinsics parameters matrix)
• fx, fy = focal lengths expressed in pixel units
• u0, v0 = coordinates of the optical center (aka principal

point), origin in the image plane
• [R|t] = joint rotation-translation matrix (a.k.a. extrinsics parameters

matrix), describing the camera pose, and translating from world
coordinates to camera coordinates
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2. Digital Image

2.3. 3D projection on 2D plane

⇒ digital image function f (x , y)
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2. Digital Image

2.3. 3D projection on 2D plane

⇒ digital image function f (x , y)

Typical ranges:
• uint8 = [0-255] (0=black, 255=white)

(8 bits = 1 byte = 28 = 256 values per pixel)
• float32 = [0-1] (0=black, 1=white)

(32 bits = 4 bytes = 4.3e9 values per pixel)
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2. Digital Image

2.4. color image

How do we record colors?
⇒ Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

(source wikipedia)

NB: notice the filter pattern is 1/2 green, 1/4 red and 1/4 blue ⇒ more green photosensors are used in order to mimic
the physiology of the human eye, which is more sensitive to green light.
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2. Digital Image

2.4. color image

How do we record colors?
⇒ Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

1. Original scene
2. Output of a 120×80-pixel sensor with a Bayer filter
3. Output color-coded with Bayer filter colors
4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
5. Full RGB version at 120×80-pixels for comparison
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2. Digital Image

2.4. color image

⇒ color image = 3D tensor in colorspace
• RGB = Red + Green + Blue bands (.JPEG)
• RGBA = Red + Green + Blue + Alpha bands (.PNG, .GIF, .BMP, TIFF, .JPEG 2000)
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2. Digital Image

2.5. color spaces

Other ways to represent the color information?

RGB colorspace HSV colorspace

• Hue (H) = [0-360] ⇒ shift color
• Saturation (S) = [0-1] ⇒ shift intensity
• Value (V) = [0-1] ⇒ shift brightness
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2. Digital Image

2.5. color spaces

3D tensor with different information:

RGB colorspace HSV colorspace
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2. Digital Image

2.5. color spaces

HSV allows for more intuitive color adjustments:

•more saturation S
⇒ more intense colors

•more value V
⇒ brighter colors

•shift hue H
⇒ shift color
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2. Digital Image

2.5. color spaces

Additive vs. Subtractive Color Models:

RGB (Additive Model)
⇒ used for devices that emit light (monitors, TVs, smartphones)
⇒ additive model: colors are created by combining different intensities of red,

green, and blue light
→ combining all three colors at full intensity results in white light, absence of
all results in black

CMYK (Subtractive Model)
⇒ used for printing on paper and other physical media
⇒ subtractive color model: colors are created by subtracting light reflected off the

paper
→ combining all three colors ideally absorb all light, resulting in black (NB: in
printers black ink is added to achieve deeper blacks and reduce usage of the
other inks)
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2. Digital Image

2.6. image histogram

Histogram of pixel values in each band:
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2. Digital Image

2.6. image histogram

Histogram of pixel values after conversion from RGB (3-bands) to gray-scale (1-band):

NB: weights are chosen to mimic human perception of red, green and blue: the weight on the green band is larger because the human eye has greater sensitivity
to green (the retina contains more photoreceptor cells (cones) that are tuned to detect green light) 50 / 69



2. Digital Image

2.6. image histogram

Histogram of pixel values after conversion to float values (range [0-1])
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3. Point operations

1. Motivation

2. What is a digital image?

3. Point operations
1. homogeneous point operations
2. inhomogeneous Point Operations

4. Image manipulation with Python
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3. Point operations

Point operations
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3. Point operations

3.1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)

1. image intensity transformation using standard mathematical operations (⇒ adjust pixel color 0=black / 1=white)
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3. Point operations

3.1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)

1. image intensity transformation using Gamma correction (⇒ power-law transformation)

60 / 69



3. Point operations

3.1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)

2. image contrast adjustment (⇒ adjust image histogram)

Modified after: skimage-tutorial

Original image (no stretch)

⇒ image pixel intensity values are limited to a narrow range
⇒ without stretch only a small portion of the full range of

possible display levels is used
⇒ results in a low contrast image
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3. Point operations

3.1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)

2. image contrast adjustment (⇒ adjust image histogram)

Modified after: skimage-tutorial

Transformed image #1: linear histogram stretching

⇒ expand range of pixel intensities to stretch across full range
of possible values

⇒ rescale pixel values to a specific range
EX: rescale pixel intensities between 2nd and 98th
percentiles to occupy full 0-1 range
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https://en.wikipedia.org/wiki/Percentile


3. Point operations

3.1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)

2. image contrast adjustment (⇒ adjust image histogram)

Modified after: skimage-tutorial

Transformed image #2: histogram equalization

⇒ expand image pixel values on the basis of their frequency of
occurrence (i.e. spreads out the most frequent intensity
values)

⇒ equalized image has a roughly linear cumulative distribution
function
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3. Point operations

3.1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)

2. image contrast adjustment (⇒ adjust image histogram)

Modified after: skimage-tutorial

Transformed image #3:
adaptive histogram equalization

⇒ algorithm “Contrast Limited Adaptive
Histogram Equalization” (CLAHE)

⇒ computes histograms over different regions
of the image for local contrast enhancement

⇒ local details can be enhanced even in regions
that are darker or lighter than most of the
image
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3. Point operations

3.2. inhomogeneous Point Operations

Inhomogeneous Point Operations (depends on pixel position)

EX: background detection / change detection
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3. Point operations

3.2. inhomogeneous Point Operations

Inhomogeneous Point Operations (depends on pixel position)
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4. Image manipulation with Python

1. Motivation

2. What is a digital image?

3. Point operations

4. Image manipulation with Python
1. numpy tutorial
2. exercises
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4. Image manipulation with Python

4.1. numpy tutorial

Numpy tutorial:

⇒ Open CV4GS 02 image-basics/CV4GS 02 numpy-tutorial.ipynb
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4. Image manipulation with Python

4.2. exercises

Exercices:

⇒ Open CV4GS 02 image-basics/CV4GS 02 exercices.ipynb
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