Lecture 02 Digital Image Basics

2024-08-21

Sébastien Valade

- 1. Why Computer Vision for Geosciences?
- 2. Computer Vision processing levels
- 2. What is a digital image?
- 3. Point operations
- 4. Image manipulation with Python

1.1. Why Computer Vision for Geosciences?

Computer Vision for Geosciences (CV4GS)

Computer Vision for Geosciences (CV4GS)

- What is **Computer Vision**?
 - \Rightarrow discipline focused on enabling computers to acquire, process, and interpret visual data, primarily from digital images or video

1.1. Why Computer Vision for Geosciences?

Computer Vision for Geosciences (CV4GS)

• Sources of images for geosciences applications?

 $\Rightarrow\,$ images can be derived from different imaging techniques at different scales

1.1. Why Computer Vision for Geosciences?

Computer Vision for Geosciences (CV4GS)

• Sources of images for geosciences applications?

 \Rightarrow images can be constructed using different wavelengths spanning the entire electromagnetic spectra

1.1. Why Computer Vision for Geosciences?

UV camera

Popocatépetl 2013-01-29 (UV camera, Campion et al. 2018)

UV satellite

Popocatépetl 2019-02-17 (Sentinel-5P, MOUNTS)

1.1. Why Computer Vision for Geosciences?

IR camera

Nyiragongo 2016-04-16 (FLIR image, Valade et al. 2018)

IR satellite

Etna 2021-02-23 (Sentinel-2 image, MOUNTS)

1.1. Why Computer Vision for Geosciences?

SAR satellite

PopocatépetI SAR 2021-12-25 (Sentinel-1, MOUNTS)

InSAR satellite

PopocatépetI InSAR interferogram 2021-12-25 dt=6 days (MOUNTS)

1.1. Why Computer Vision for Geosciences?

400 450 500 550 600 650 700 (nm)

Wavelength, λ (m)

10 ⁻¹² 10	0-11	10 ⁻¹⁰ 1	0-9	10 ⁻⁸ 1	10 ⁻⁷	10 ⁻⁶ 1	0 ⁻⁵ 1	0 ⁻⁴ 1	0 ⁻³ 1	0 ⁻² 1	0 ⁻¹	10 ⁰ 10
Gamma		X-ray		Vis Ultraviolet		Infrared			Microwave			Radio
10 ²⁰	10 ¹⁹	10 ¹⁸	10 ¹⁷	10 ¹⁶	10 ¹⁵	10 ¹⁴	10 ¹³	10 ¹²	10 ¹¹	10 ¹⁰	10 ⁹	10 ⁸
requency	ν (Hz	2)										

telescope

Visible light (Hubble)

Ultraviolet radiation (Astro-1)

High-energy X-ray (HEFT) *** 15 min exposure ***

Crab Nebula - remanent of an exploded star (supernova)

1.1. Why Computer Vision for Geosciences?

Radio wave (VLA)

Ultraviolet radiation (Astro-1)

. .

Visible light (Hubble)

Low-energy X-ray (Chandra)

1.1. Why Computer Vision for Geosciences?

400 450 500 550 600 650 700 (nm) Wavelength, λ (m) 10^{-12} 10^{-11} 10^{-10} 10^{-8} 10⁻⁷ 10⁻⁶ 10^{-5} 10 Vis Gamma X-rav Ultraviolet Infrared Radio 1019 10¹⁶ 10¹⁵ 1014 1013 1012 1020 1018 1017 1011 1010 108 Frequency, v (Hz) telescope Infrared radiation (Spitzer) Radio wave (VLA) Visible light (Hubble)

> Low-energy X-ray (Chandra) Crab Nebula - remanent of an exploded star (supernova)

High-energy X-ray (HEFT) *** 15 min exposure ***

Ultraviolet radiation (Astro-1)

From image acquisition to image processing:

"Computer Vision tasks include methods for acquiring, processing, analyzing and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information, e.g., in the forms of decisions".

Examples of processing levels:

- Low-level processing
 - image manipulation ⇒ *resizing*, *color adjustments*, *filtering*, *etc*.
 - feature extraction \Rightarrow *edges, gradients, etc.*
- Mid-level processing
 - panorama stitching
 - Structure from Motion (SfM) \Rightarrow 2D to 3D
 - Optical Flow \Rightarrow velocities
- High-level processing
 - classification \Rightarrow what is in the image?
 - detection \Rightarrow where are they?
 - segmentation (semantic or instance) ⇒ segment image and give names

Examples of processing levels:

- Low-level processing
 - image manipulation ⇒ resizing, color adjustments, filtering, etc.
 - feature extraction \Rightarrow *edges, gradients, etc.*
- Mid-level processing
 - panorama stitching
 - Structure from Motion (SfM) \Rightarrow 2D to 3D
 - Optical Flow \Rightarrow velocities
- High-level processing
 - classification \Rightarrow what is in the image?
 - detection \Rightarrow where are they?
 - segmentation (semantic or instance) ⇒ segment image and give names

1.2. Computer Vision processing levels

Examples of processing levels:

- Low-level processing
 - image manipulation ⇒ resizing, color adjustments, filtering, etc.
 - feature extraction ⇒ *edges*, *gradients*, *etc*.
- Mid-level processing
 - panorama stitching
 - Structure from Motion (SfM) \Rightarrow 2D to 3D
 - Optical Flow \Rightarrow velocities
- High-level processing
 - classification ⇒ what is in the image?
 - detection \Rightarrow where are they?
 - segmentation (semantic or instance) ⇒ segment image and give names

panorama stiching

Optical Flow (Farneback)

Examples of processing levels:

- Low-level processing
 - image manipulation ⇒ resizing, color adjustments, filtering, etc.
 - feature extraction \Rightarrow *edges, gradients, etc.*
- Mid-level processing
 - panorama stitching
 - Structure from Motion (SfM) \Rightarrow 2D to 3D
 - Optical Flow \Rightarrow velocities
- High-level processing
 - classification \Rightarrow what is in the image?
 - detection \Rightarrow where are they?
 - segmentation (semantic or instance) ⇒ segment image and give names

Credit: cloudfactory

Examples of processing levels:

- Low-level processing
 - image manipulation ⇒ resizing, color adjustments, filtering, etc.
 - feature extraction \Rightarrow edges, gradients, etc.
- Mid-level processing
 - panorama stitching
 - Structure from Motion (SfM) \Rightarrow 2D to 3D
 - Optical Flow \Rightarrow velocities
- High-level processing
 - classification ⇒ what is in the image?
 - detection \Rightarrow where are they?
 - segmentation (semantic or instance) ⇒ segment image and give names

2. What is a digital image?

- 1. image acquisition
- 2. sampling and quantization
- 3. 3D projection on 2D plane
- 4. color image
- 5. color spaces
- 6. image histogram
- 3. Point operations
- 4. Image manipulation with Python

1. energy from an illumination source is reflected from a scene

- the imaging system collects the incoming energy and focuses it onto an image plane <u>NB</u>: light-sensing instruments typically use 2-D arrays of photosensors to record incoming light intensity l(x): the CCD (<u>Charge-Coupled Device</u>)
- 3. the image plane is sampled and quantized to produce a digital image

Credit: Gonzalez & Woods 2018

- 1. energy from an illumination source is reflected from a scene
- 2. the **imaging system** collects the incoming energy and focuses it onto an **image plane**
 - \underline{NB} : light-sensing instruments typically use 2-D arrays of photosensors to record incoming light intensity I(x): the CCD (Charge-Coupled Device)
- 3. the image plane is sampled and quantized to produce a digital image

Credit: Gonzalez & Woods 2018

- 1. energy from an illumination source is reflected from a scene
- the imaging system collects the incoming energy and focuses it onto an image plane <u>NB</u>: light-sensing instruments typically use 2-D arrays of photosensors to record incoming light intensity I(x): the CCD (<u>Charge-Coupled Device</u>)

3. the image plane is sampled and quantized to produce a digital image

Credit: Gonzalez & Woods 2018

- 1. energy from an illumination source is reflected from a scene
- the imaging system collects the incoming energy and focuses it onto an image plane <u>NB</u>: light-sensing instruments typically use 2-D arrays of photosensors to record incoming light intensity I(x): the CCD (<u>Charge-Coupled Device</u>)
- 3. the image plane is sampled and quantized to produce a digital image

Credit: Gonzalez & Woods 2018

2.2. sampling and quantization

• each photosensor records incident light

- digitalization of an analog signal involves two operations
 - spatial sampling (= discretization of space domain)
 - **intensity quantization** (= discretization of incoming light signal)

2.2. sampling and quantization

- each photosensor records incident light
- digitalization of an analog signal involves two operations
 - **spatial sampling** (= discretization of space domain)
 - **intensity quantization** (= discretization of incoming light signal)

2.2. sampling and quantization

spatial sampling (= discretization of space domain)

 \Rightarrow smallest element resulting from the discretization of the space is called a pixel (=picture element)

(512, 512)

(64, 64)

(32, 32)

intensity quantization (= discretization of light intensity signal)

 \Rightarrow typically, 256 levels (8 bits/pixel = 2⁸ values) suffices to represent the intensity

3-bit resoluti $2^3 = 8$ gray let 2-bit resolution 2² = 4 gray level 1-bit resolution $2^1 = 2$ gray levels

2.2. sampling and quantization

spatial sampling (= discretization of space domain)

 \Rightarrow smallest element resulting from the discretization of the space is called a pixel (=picture element)

(512, 512)

(64, 64)

intensity quantization (= discretization of light intensity signal)

 $\Rightarrow \text{typically, 256 levels (8 bits/pixel = 2⁸ values) suffices to represent the intensity$ B-bit resolution2⁹ = 256 gray levels2⁹ = 2 gray levels2² = 8 gray levels2² = 8 gray levels2² = 4 gray levels2² = 4 gray levels2² = 4 gray levels2² = 2 gray levels2³ = 0 gray levels2⁴ = 2 gray leve 2.3. 3D projection on 2D plane

But how is the 3D world projected on a 2D plane? \Rightarrow comparison between human eye and pinhole camera:

In 1514, Leonardo da Vinci explained: "By letting the images of illuminated objects penetrate through a small hole into a very dark room, you will then intercept these images on a white sheet of paper placed in this room. [...] but they will be smaller and reversed".

2.3. 3D projection on 2D plane

Image = 3D world projection on 2D

 \Rightarrow projection using the **pinhole camera** model:

Perspective transformation:

$$s \ m' = K[R|t]M' \tag{1}$$

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & 0 & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \tag{2}$$

- M' = 3D point in space with coordinates $[X, Y, Z]^T$ expressed in Euclidean coordinates
- m' = projection of the 3D point M' onto the image plane with coordinates [u, v]^T expressed in pixel units
- K =<u>camera calibration matrix</u> (a.k.a instrinsics parameters matrix)
 - f_x , f_y = focal lengths expressed in pixel units
 - $u_0, v_0 = \text{coordinates of the optical center (aka principal point), origin in the image plane$
- [R]t] = joint rotation-translation matrix (a.k.a. extrinsics parameters matrix), describing the camera pose, and translating from world coordinates to camera coordinates

2.3. 3D projection on 2D plane

Image = 3D world projection on 2D

 \Rightarrow projection using the **pinhole camera** model:

Perspective transformation:

$$s m' = K[R|t]M' \tag{1}$$

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & 0 & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
(2)

- *M*['] = 3D point in space with coordinates [*X*, *Y*, *Z*]^T expressed in Euclidean coordinates
- m' = projection of the 3D point M' onto the image plane with coordinates [u, v]^T expressed in pixel units
- K =<u>camera calibration matrix</u> (a.k.a instrinsics parameters matrix)
 - $f_x, f_y =$ focal lengths expressed in pixel units
 - $u_0, v_0 = \text{coordinates of the optical center (aka principal point), origin in the image plane$
- [R]t] = joint rotation-translation matrix (a.k.a. extrinsics parameters matrix), describing the camera pose, and translating from world coordinates to camera coordinates

2.3. 3D projection on 2D plane

Image = 3D world projection on 2D

 \Rightarrow projection using the **pinhole camera** model:

Perspective transformation:

$$s m' = K[R|t]M' \tag{1}$$

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_{\chi} & 0 & u_0 \\ 0 & f_{\gamma} & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
(2)

- M' = 3D point in space with coordinates $[X, Y, Z]^T$ expressed in Euclidean coordinates
- m' = projection of the 3D point M' onto the image plane with coordinates [u, v]^T expressed in pixel units
- K =<u>camera calibration matrix</u> (a.k.a instrinsics parameters matrix)
 - fx, fy = focal lengths expressed in pixel units
 - u_0 , v_0 = coordinates of the optical center (aka principal point), origin in the image plane
- [R]t] = joint rotation-translation matrix (a.k.a. extrinsics parameters matrix), describing the camera pose, and translating from world coordinates to camera coordinates

2.3. 3D projection on 2D plane

Image = 3D world projection on 2D

 \Rightarrow projection using the **pinhole camera** model:

Perspective transformation:

$$s m' = K[R|t]M' \tag{1}$$

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_{\chi} & 0 & u_0 \\ 0 & f_{\gamma} & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
(2)

- M' = 3D point in space with coordinates $[X, Y, Z]^T$ expressed in Euclidean coordinates
- m' = projection of the 3D point M' onto the image plane with coordinates [u, v]^T expressed in pixel units
- K =<u>camera calibration matrix</u> (a.k.a instrinsics parameters matrix)
 - fx, fy = focal lengths expressed in pixel units
 - $u_0, v_0 =$ coordinates of the optical center (aka principal point), origin in the image plane
- [R|t] = joint rotation-translation matrix (a.k.a. extrinsics parameters matrix), describing the camera pose, and translating from world coordinates to camera coordinates

 \Rightarrow digital image function f(x, y)

\Rightarrow digital image function f(x, y)

Typical ranges:

• uint8 = [0-255] (0=black, 255=white) (8 bits = 1 byte = 2^8 = 256 values per pixel)

2.4. color image

How do we record colors?

 \Rightarrow **Bayer Filter**: color filter array for arranging RGB color filters on a square grid of photosensors

<u>NB</u>: notice the filter pattern is 1/2 green, 1/4 red and 1/4 blue \Rightarrow more green photosensors are used in order to mimic the physiology of the human eye, which is more sensitive to green light.

How do we record colors?

 \Rightarrow **Bayer Filter**: color filter array for arranging RGB color filters on a square grid of photosensors

1. Original scene

- 2. Output of a 120×80 -pixel sensor with a Bayer filter
- 3. Output color-coded with Bayer filter colors
- 4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
- 5. Full RGB version at 120×80 -pixels for comparison

How do we record colors?

 \Rightarrow **Bayer Filter**: color filter array for arranging RGB color filters on a square grid of photosensors

- 1. Original scene
- 2. Output of a 120×80 -pixel sensor with a Bayer filter
- 3. Output color-coded with Bayer filter colors
- 4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
- 5. Full RGB version at 120×80-pixels for comparison

How do we record colors?

 \Rightarrow **Bayer Filter**: color filter array for arranging RGB color filters on a square grid of photosensors

- 1. Original scene
- 2. Output of a 120×80 -pixel sensor with a Bayer filter
- 3. Output color-coded with Bayer filter colors
- 4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
- 5. Full RGB version at 120×80-pixels for comparison

How do we record colors?

 \Rightarrow **Bayer Filter**: color filter array for arranging RGB color filters on a square grid of photosensors

- 1. Original scene
- 2. Output of a 120×80 -pixel sensor with a Bayer filter
- 3. Output color-coded with Bayer filter colors
- 4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)

5. Full RGB version at 120×80-pixels for comparison

How do we record colors?

 \Rightarrow **Bayer Filter**: color filter array for arranging RGB color filters on a square grid of photosensors

- 1. Original scene
- 2. Output of a 120×80 -pixel sensor with a Bayer filter
- 3. Output color-coded with Bayer filter colors
- 4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
- 5. Full RGB version at 120×80 -pixels for comparison

2.4. color image

- \Rightarrow color image = 3D tensor in colorspace
 - **RGB** = Red + Green + Blue bands (.JPEG)
 - **RGBA** = Red + Green + Blue + Alpha bands (.PNG, .GIF, .BMP, TIFF, .JPEG 2000)

Other ways to represent the color information?

HSV colorspace

- Hue (H) = [0-360] \Rightarrow shift color
- Saturation (S) = [0-1] \Rightarrow shift intensity
- Value (V) = [0-1] \Rightarrow shift brightness

3D tensor with different information:

RGB colorspace

HSV colorspace

2.5. color spaces

HSV allows for more intuitive color adjustments:

• more saturation S \Rightarrow more intense colors

original

■ more value V ⇒ brighter colors

■ shift hue H ⇒ shift color

2.5. color spaces

HSV allows for more intuitive color adjustments:

• more saturation S \Rightarrow more intense colors

■ more value V ⇒ brighter colors

value x1.5

• shift hue H \Rightarrow shift color

2.5. color spaces

HSV allows for more intuitive color adjustments:

• more saturation S \Rightarrow more intense colors

• more value V \Rightarrow brighter colors

• shift hue H \Rightarrow shift color

value x1.5

hue x5

2.5. color spaces

Additive vs. Subtractive Color Models:

RGB (Additive Model)

- \Rightarrow used for devices that emit light (monitors, TVs, smartphones)
- $\Rightarrow \ \underline{additive \ model}:$ colors are created by combining different intensities of red, green, and blue light
 - \rightarrow combining all three colors at full intensity results in white light, absence of all results in black

CMYK (Subtractive Model)

- \Rightarrow used for printing on paper and other physical media
- ⇒ <u>subtractive color model</u>: colors are created by subtracting light reflected off the paper

 \rightarrow combining all three colors ideally absorb all light, resulting in *black* (NB: in printers black ink is added to achieve deeper blacks and reduce usage of the other inks)

Additive vs. Subtractive Color Models:

RGB (Additive Model)

- \Rightarrow used for devices that emit light (monitors, TVs, smartphones)
- $\Rightarrow \ \underline{additive \ model}:$ colors are created by combining different intensities of red, green, and blue light
 - \rightarrow combining all three colors at full intensity results in white light, absence of all results in black

CMYK (Subtractive Model)

- $\Rightarrow~$ used for printing on paper and other physical media
- \Rightarrow subtractive color model: colors are created by subtracting light reflected off the paper

 \rightarrow combining all three colors ideally absorb all light, resulting in *black* (NB: in printers black ink is added to achieve deeper blacks and reduce usage of the other inks)

2.6. image histogram

Histogram of pixel values in each band:

original (uint8)

2.6. image histogram

Histogram of pixel values after conversion from RGB (3-bands) to gray-scale (1-band):

30000 total 25000 20000 15000 ting 10000 5000 0 Ô 50 100 150 200 250 Intensity value

<u>NB</u>: weights are chosen to mimic human perception of red, green and blue: the weight on the green band is larger because the human eye has greater sensitivity to green (the retina contains more photoreceptor cells (cones) that are tuned to detect green light) 50 / 69

gray-scale (uint8)

2.6. image histogram

Histogram of pixel values after conversion to float values (range [0-1])

gray-scale (float)

2. What is a digital image?

3. Point operations

- 1. homogeneous point operations
- 2. inhomogeneous Point Operations
- 4. Image manipulation with Python

Homogeneous Point Operations (does not depend on pixel position)

1. image intensity transformation using standard mathematical operations (\Rightarrow adjust pixel color 0=black / 1=white)

identity

Homogeneous Point Operations (does not depend on pixel position)

1. image intensity transformation using standard mathematical operations (\Rightarrow adjust pixel color 0=black / 1=white)

Homogeneous Point Operations (does not depend on pixel position)

1. image intensity transformation using standard mathematical operations (\Rightarrow adjust pixel color 0=black / 1=white)

56 / 69

Homogeneous Point Operations (does not depend on pixel position)

1. image intensity transformation using standard mathematical operations (\Rightarrow adjust pixel color 0=black / 1=white)

logarithm

inverse

square root

Homogeneous Point Operations (does not depend on pixel position)

1. image intensity transformation using standard mathematical operations (\Rightarrow adjust pixel color 0=black / 1=white)

logarithm

inverse

exponential

square root

 $q(x, y) = a \cdot exp(f(x, y) - 1)$

Homogeneous Point Operations (does not depend on pixel position)

1. image intensity transformation using standard mathematical operations (\Rightarrow adjust pixel color 0=black / 1=white)

59 / 69

Homogeneous Point Operations (does not depend on pixel position)

1. image intensity transformation using Gamma correction (\Rightarrow power-law transformation)

2. image contrast adjustment (\Rightarrow adjust image histogram)

ORIGINAL image low contrast

Modified after: skimage-tutorial

Original image (no stretch)

- \Rightarrow image pixel intensity values are limited to a narrow range
- $\Rightarrow\,$ without stretch only a small portion of the full range of possible display levels is used
- \Rightarrow results in a low contrast image

2. image contrast adjustment (\Rightarrow adjust image histogram)

Modified after: skimage-tutorial

Transformed image #1: linear histogram stretching

- \Rightarrow expand range of pixel intensities to stretch across full range of possible values
- ⇒ rescale pixel values to a specific range <u>EX</u>: rescale pixel intensities between 2nd and 98th percentiles to occupy full 0-1 range

2. image contrast adjustment (\Rightarrow adjust image histogram)

Transformed image #2: histogram equalization

- \Rightarrow expand image pixel values on the basis of their frequency of occurrence (i.e. spreads out the most frequent intensity values)
- $\Rightarrow\,$ equalized image has a roughly linear cumulative distribution function

Modified after: skimage-tutorial

2. image contrast adjustment (\Rightarrow adjust image histogram)

Transformed image #3: adaptive histogram equalization

- ⇒ algorithm "Contrast Limited Adaptive Histogram Equalization" (CLAHE)
- $\Rightarrow\,$ computes histograms over different regions of the image for local contrast enhancement
- $\Rightarrow\,$ local details can be enhanced even in regions that are darker or lighter than most of the image

Modified after: skimage-tutorial

Inhomogeneous Point Operations (depends on pixel position)

 $\underline{\text{EX}}:$ background detection / change detection

Inhomogeneous Point Operations (depends on pixel position)

- 2. What is a digital image?
- 3. Point operations

4. Image manipulation with Python

- 1. numpy tutorial
- 2. exercises

4.1. numpy tutorial

Numpy tutorial:

 \Rightarrow Open CV4GS_02_image-basics/CV4GS_02_numpy-tutorial.ipynb

4.2. exercises

Exercices:

 \Rightarrow Open CV4GS_02_image-basics/CV4GS_02_exercices.ipynb