Lecture 07 Machine Learning 1: regression

2024-10-02

Sébastien Valade

2. [Supervised learning \(regression\)](#page-16-0)

Introduction

Artificial Intelligence

broad concept, whereby machine mimics human behaviour

Artificial Intelligence

broad concept, whereby machine mimics human behaviour

Machine Learning (a.k.a. Statistical Learning, Classical Learning) subset of AI which uses **statistical** methods (features are designed by the user)

Artificial Intelligence

broad concept, whereby machine mimics human behaviour

Machine Learning (a.k.a. Statistical Learning, Classical Learning) subset of AI which uses **statistical** methods (features are designed by the user)

Deep Learning (a.k.a. Modern Machine Learning) subset of ML, which uses **multi-layered neural networks** (features are learned by the network)

Artificial Intelligence

broad concept, whereby machine mimics human behaviour

Machine Learning (a.k.a. Statistical Learning, Classical Learning) subset of AI which uses **statistical** methods (features are designed by the user)

Deep Learning (a.k.a. Modern Machine Learning) subset of ML, which uses **multi-layered neural networks** (features are learned by the network)

ML: lectures 07 (today), 08, 09, 10 **DL**: lectures 11, 12, 13

Machine Learning is a huge (and growing) field!

 $\frac{1}{7}/42$

Machine Learning is a huge (and growing) field!

 $\frac{1}{8}/42$

Machine Learning is a huge (and growing) field!

 $square$ 9/42

Introduction

Machine Learning is a huge (and growing) field!

Introduction

Machine Learning is a huge (and growing) field!

Introduction

Machine Learning is a huge (and growing) field!

- ▶ Learning algorithm is presented inputs and desired outputs:
training data $D = (in, out)$
- \triangleright Goal: learn a general rule f that maps inputs to outputs $f(in) = \tilde{out}$
- ⇒ **Regression task**: out is a continuous number e.g. linear regression, polynomial regression
- ⇒ **Classification task**: out is a nominal number (class label) e.g. kNN, SVM, Logistic Regression

- ▶ Learning algorithm is presented inputs and desired outputs: **training data** $D = (in, out)$
- \triangleright Goal: learn a general rule f that maps inputs to outputs $f(in) = \tilde{out}$
- ⇒ **Regression task**: out is a continuous number e.g. linear regression, polynomial regression
- ⇒ **Classification task**: out is a nominal number (class label) e.g. kNN, SVM, Logistic Regression
- ▶ No training data is given to the learning algorithm
- ▶ Goal: find structure data, discover hidden patterns, learn features
- ⇒ **Dimension reduction** e.g. PCA (\rightarrow also used to craft features)
- ⇒ **Clustering task** e.g. K-means

- ▶ Learning algorithm is presented inputs and desired outputs: **training data** $D = (in, out)$
- \triangleright Goal: learn a general rule f that maps inputs to outputs $f(in) = \tilde{out}$
- ⇒ **Regression task**: out is a continuous number
	- e.g. linear regression, polynomial regression
- ⇒ **Classification task**: out is a nominal number (class label) e.g. kNN, SVM, Logistic Regression
- ▶ No training data is given to the learning algorithm
- ▶ Goal: find structure data, discover hidden patterns, learn features
- ⇒ **Dimension reduction** e.g. PCA (\rightarrow also used to craft features)
- ⇒ **Clustering task** e.g. K-means

2. [Supervised learning \(regression\)](#page-16-0)

- 1. [goal of supervised learning](#page-17-0)
- 2. [regression model](#page-18-0)
- 3. [parametric method: linear regression](#page-22-0)
- 4. [polynomial regression](#page-28-0)
- 5. [overfitting and underfitting](#page-32-0)
- 6. [bias/variance trade-off](#page-35-0)
- 7. [bias/variance trade-off](#page-35-0)
- 8. [training and test sets](#page-39-0)

2.1. goal of supervised learning

Goal of supervised learning

- \Rightarrow learn a function f which maps low-level image features (X) to high-level image information (Y):
	- → **classification task** ⇒ extract semantic classes (output=nominal number)
	- \rightarrow **regression task** \Rightarrow extract measurements (output=continuous number)

CLASSIFICATION task

Regression model

we assume that two variables $X \& Y$ are ideally related by a function f:

 $Y = f(X) + \epsilon$

• $X = input$ variable (a.k.a. independent variable, or feature)

where:

- $Y =$ output variable (a.k.a. dependent variable, or target variable)
- \bullet ϵ = random error (intrinsic dataset error)

Regression model

goal: learn the prediction function \hat{f} using a set of **training samples** (i.e. pairs of (x_i, y_i))

⇒ how: minimize a criterion (a.k.a. the **prediction error** or **cost function**), which measures how well the predicted function f fits our training samples \rightarrow for regression models, this metric is typically the **Mean Squared Error (MSE)**:

$$
MSE(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2
$$

Regression model

goal: learn the prediction function \hat{f} using a set of **training samples** (i.e. pairs of (x_i, y_i))

⇒ how: minimize a criterion (a.k.a. the **prediction error** or **cost function**), which measures how well the predicted function f fits our training samples

 \rightarrow for regression models, this metric is typically the **Mean Squared Error (MSE)**:

$$
MSE(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2
$$

Regression model

 \Rightarrow minimizing the MSE means finding function \hat{f} that best fits the training samples

$$
MSE(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2
$$

$$
\hat{f} = \operatorname{argmin}_{f \in \mathcal{M}} MSE(f)
$$

* the expression argmin_{f ∈M} is mathematical notation for "the argument of the minimum", indicating we are trying to find the $\frac{1}{2}$ function f from a set of possible functions M that minimizes the MSE 22 / 42

- 2. [Supervised learning \(regression\)](#page-16-0)
- 2.3. parametric method: linear regression

Parametric method: linear regression

parametric supervised learning means we assume that \hat{f} takes a specific form, for example a linear relationship between X and Y :

$$
\hat{f}(x) = \alpha x + \beta
$$

 \Rightarrow the prediction error $MSE(\hat{f})$ therefore depends on 2 parameters (α, β) which need to be determined:

$$
E(\alpha, \beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2
$$

$$
= \frac{1}{n} \sum_{i=1}^{n} (y_i - (\alpha x_i + \beta))^2
$$

solution: solving for $dE/d\alpha = 0$ and $dE/d\beta = 0$ allows for an analytical solution of $(\hat{\alpha}, \hat{\beta})$:

$$
\hat{\alpha} = \frac{\sum_{i}(x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i}(x_{i} - \bar{x})^{2}} = \frac{(X - \bar{X}) \cdot (Y - \bar{Y})}{(X - \bar{X}) \cdot (X - \bar{X})} = \frac{\text{cov}(X, Y)}{\text{var}(X)} \quad \text{where } \bar{x} \text{ and } \bar{y} \text{ are the mean of } x \text{ and } y:
$$
\n
$$
\hat{\beta} = \bar{y} - \hat{\alpha}\bar{x}
$$
\n
$$
\hat{\beta} = \bar{y} - \hat{\alpha}\bar{x}
$$

- 2. [Supervised learning \(regression\)](#page-16-0)
- 2.3. parametric method: linear regression

Parametric method: linear regression

 \Rightarrow parametric supervised learning means we assume that \hat{t} takes a specific form, for example a linear relationship between X and Y :

$$
\hat{f}(x) = \alpha x + \beta
$$

 \Rightarrow the prediction error $MSE(\hat{f})$ therefore depends on 2 parameters (α, β) which need to be determined:

$$
E(\alpha, \beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2
$$

$$
= \frac{1}{n} \sum_{i=1}^{n} (y_i - (\alpha x_i + \beta))^2
$$

solution: solving for $dE/d\alpha = 0$ and $dE/d\beta = 0$ allows for an analytical solution of $(\hat{\alpha}, \hat{\beta})$:

$$
\hat{\alpha} = \frac{\sum_{i}(x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i}(x_{i} - \bar{x})^{2}} = \frac{(X - \bar{X}) \cdot (Y - \bar{Y})}{(X - \bar{X}) \cdot (X - \bar{X})} = \frac{\text{cov}(X, Y)}{\text{var}(X)} \quad \text{where } \bar{x} \text{ and } \bar{y} \text{ are the mean of } x \text{ and } y:
$$
\n
$$
\hat{\beta} = \bar{y} - \hat{\alpha}\bar{x}
$$
\n
$$
\hat{\beta} = \bar{y} - \hat{\alpha}\bar{x}
$$

- 2. [Supervised learning \(regression\)](#page-16-0)
- 2.3. parametric method: linear regression

Parametric method: linear regression

 \Rightarrow parametric supervised learning means we assume that \hat{t} takes a specific form, for example a linear relationship between X and Y :

$$
\hat{f}(x) = \alpha x + \beta
$$

 \Rightarrow the prediction error *MSE*(\hat{f}) therefore depends on 2 parameters (α, β) which need to be determined:

$$
E(\alpha, \beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2
$$

$$
= \frac{1}{n} \sum_{i=1}^{n} (y_i - (\alpha x_i + \beta))^2
$$

solution: solving for $dE/d\alpha = 0$ and $dE/d\beta = 0$ allows for an analytical solution of $(\hat{\alpha}, \hat{\beta})$:

$$
\hat{\alpha} = \frac{\sum_{i}(x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i}(x_{i} - \bar{x})^{2}} = \frac{(X - \bar{X}) \cdot (Y - \bar{Y})}{(X - \bar{X}) \cdot (X - \bar{X})} = \frac{\text{cov}(X, Y)}{\text{var}(X)} \quad \text{where } \bar{x} \text{ and } \bar{y} \text{ are the mean of } x \text{ and } y:
$$
\n
$$
\hat{\beta} = \bar{y} - \hat{\alpha}\bar{x}
$$
\n
$$
\hat{\beta} = \bar{y} - \hat{\alpha}\bar{x}
$$

2. [Supervised learning \(regression\)](#page-16-0)

2.3. parametric method: linear regression

The analytical solutions for (α, β) can be found using the *normal equation*:

 \Rightarrow the linear equation for a dataset with *n* observations is written as:

$$
Y = \alpha X + \beta
$$
\n
$$
\bullet \quad X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = nx1 \text{ vector of observed values } x_i; \ Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = nx1 \text{ vector of observed values } y_i
$$
\n
$$
\bullet \quad \alpha = \text{slope of the line}
$$
\n
$$
\bullet \quad \beta = \text{intercept}
$$

 \Rightarrow the linear equation can be written in matrix form:

$$
Y = X\theta
$$
\n
$$
= \begin{pmatrix}\n1 & x_1 \\
\vdots & \vdots \\
1 & x_n\n\end{pmatrix} = nx2 \text{ matrix of ones } \& \text{ values of } x_i; Y = \begin{pmatrix}\ny_1 \\
\vdots \\
y_n\n\end{pmatrix} = nx1 \text{ vector of values } y_i
$$
\n
$$
= \theta = \begin{pmatrix}\n\beta \\
\alpha\n\end{pmatrix} = 2x1 \text{ vector of coefficients } (\beta, \alpha)
$$

 \Rightarrow now $\hat{\theta} = (\hat{\beta}, \hat{\alpha})$ is estimated by minimizing the least squares error, which results in the following solution: $\hat{\theta} = (X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}} Y$

- 2. [Supervised learning \(regression\)](#page-16-0)
- 2.3. parametric method: linear regression
	- \Rightarrow **Error surface** of the coefficients (α, β) and estimated values $(\hat{\alpha}, \hat{\beta})$:

 \Rightarrow Note: the error surface is *convex*, which means a unique minimum exists

- 2. [Supervised learning \(regression\)](#page-16-0)
- 2.3. parametric method: linear regression
	- \Rightarrow **Error surface** of the coefficients (α, β) and estimated values $(\hat{\alpha}, \hat{\beta})$:

 \Rightarrow Note: the error surface is convex, which means a unique minimum exists

2. [Supervised learning \(regression\)](#page-16-0)

What if linear regression is not enough?

⇒ **polynomial regression** is a form of linear regression, where the relationship between the independent variable X and the dependent variable $\,Y$ is modeled as an $\,n^{th}$ degree polynomial:

$$
\hat{f}(x) = \alpha_0 + \alpha_1 x^1 + \alpha_2 x^2 + \ldots + \alpha_n x^n
$$

Polynomial regression as a linear model

⇒ **polynomial regression** is a form of linear regression, where the relationship between the independent variable X and the dependent variable $\,Y$ is modeled as an $\,n^{th}$ degree polynomial:

$$
\hat{f}(x) = \alpha_0 + \alpha_1 x^1 + \alpha_2 x^2 + \ldots + \alpha_n x^n
$$

 \rightarrow we are effectively mapping the feature x in a higher dimensional feature space $x' = (x, ..., x^n)$

 \rightarrow if we treat xⁿ as a new features, we can think of this as a linear equation in the transformed feature space:

 $y = \alpha_0 + \alpha_1 \cdot (new_feature_1) + ... + \alpha_n \cdot (new_feature_n)$

 \rightarrow this allows us to use linear regression to fit the polynomial model!

Polynomial regression as a linear model

- \Rightarrow linearity in terms of coefficients allows us to use linear regression to fit polynomial data of degree d:
	- \rightarrow the equation is **non-linear with respect to** x because of the higher-order terms (x^2, \ldots, x^d) \Rightarrow the model can capture non-linear relationships between X and Y
	- \rightarrow however, the equation is **linear with respect to the coefficients** $(\alpha_0, \ldots, \alpha_d)$

 \Rightarrow the model can be solved using linear regression (coefficients found analytically using the normal equation):

$$
\hat{\theta} = (X^T X)^{-1} X^T Y
$$
\n
$$
\hat{\theta} = (X^T X)^{-1} X^T Y
$$
\nwhere:
\n
$$
\hat{\theta} = (\frac{X^T X}{X})^{-1} X^T Y
$$
\n
$$
\hat{\theta} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = n \times 1 \text{ vector of values } y_i
$$
\n
$$
\hat{\theta} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = (d+1) \times 1 \text{ vector of coefficients } \alpha_i
$$

Polynomial regression as a linear model

- ⇒ advantages: can model non-linear relationships, more flexible than linear regression
- ⇒ drawbacks: more complex, more prone to **overfitting**

2.5. overfitting and underfitting

What is overfitting & underfitting?

overfitting ⇒ model is too complex

 \rightarrow captures the noise in the training data \rightarrow does not generalize well to new data

2.5. overfitting and underfitting

What is overfitting & underfitting?

overfitting ⇒ model is too complex

 \rightarrow captures the noise in the training data \rightarrow does not generalize well to new data

 \rightarrow does not capture the underlying structure of the data

2.5. overfitting and underfitting

What is overfitting & underfitting?

overfitting ⇒ model is too complex

 \rightarrow captures the noise in the training data \rightarrow does not generalize well to new data

 \rightarrow does not capture the underlying structure of the data

⇒ optimal model complexity & ability to generalize to unseen data?

Bias-variance trade-off

A model's generalization error can be expressed as the sum of three different errors:

• irreducible error: error due to the noisiness of the data itself

Bias-variance trade-off

A model's generalization error can be expressed as the sum of three different errors:

- irreducible error: error due to the noisiness of the data itself
- **bias**: error due to overly simplistic assumptions in the model
	- \rightarrow high-bias model \Rightarrow model is too simple (e.g., linear model for quadratic data), prone to *underfitting*

Bias-variance trade-off

A model's generalization error can be expressed as the sum of three different errors:

- irreducible error: error due to the noisiness of the data itself
- **bias**: error due to overly simplistic assumptions in the model
	- \rightarrow high-bias model \Rightarrow model is too simple (e.g., linear model for quadratic data), prone to *underfitting*
- **variance**: error due to excessive sensitivity to small fluctuations in the training data
	- \rightarrow high-variance model \Rightarrow model with many degrees of freedom (e.g. high-deg. polynomial), prone to overfitting

Bias-variance trade-off

- \Rightarrow as the model complexity increases, bias decreases but variance increases
- \Rightarrow the optimal model complexity results from a trade-off between bias and variance:

2.8. training and test sets

How can we evaluate the model capability to generalize?

 \Rightarrow we divide the dataset into 2 subsets (sometimes more, we'll see that later):

- **training set**: used to train the model (i.e. estimate the coefficients)
- **test set**: used to evaluate the model's performance on unseen data

2. [Supervised learning \(regression\)](#page-16-0)

2.8. training and test sets

How can we evaluate the model capability to generalize?

 \Rightarrow with increasing model complexity, the *training error decreases*, while the *test error first decreases*, then increases

2.8. training and test sets

How can we evaluate the model capability to generalize?

 \Rightarrow with increasing model complexity, the training error decreases, while the test error first decreases. then increases

