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1. Introduction

Introduction

AI
Artificial Intelligence
broad concept, whereby machine mimics human behaviour

ML
Machine Learning (a.k.a. Statistical Learning, Classical Learning)
subset of AI which uses statistical methods
(features are designed by the user)

DL
Deep Learning (a.k.a. Modern Machine Learning)
subset of ML, which uses multi-layered neural networks
(features are learned by the network)

ML: lectures 07 (today), 08, 09, 10
DL: lectures 11, 12, 13
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1. Introduction

Introduction

Machine Learning is a huge (and growing) field!

ML

ML1

ML 2-3

ML 2-3

ML4

DL

source 7 / 42

https://noeliagorod.com/2019/05/21/machine-learning-for-everyone-in-simple-words-with-real-world-examples-yes-again/
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1. Introduction

Introduction

Classical
Learning

Supervised Learning Unsupervised Learning

▶ Learning algorithm is presented inputs and desired outputs:
training data D = (in, out)

▶ Goal: learn a general rule f that maps inputs to outputs
f (in) = out

⇒ Regression task: out is a continuous number
e.g. linear regression, polynomial regression

⇒ Classification task: out is a nominal number (class label)
e.g. kNN, SVM, Logistic Regression

▶ No training data is given to the learning algorithm

▶ Goal: find structure data, discover hidden patterns, learn
features

⇒ Dimension reduction
e.g. PCA (→ also used to craft features)

⇒ Clustering task
e.g. K-means
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2. Supervised learning (regression)

1. Introduction

2. Supervised learning (regression)
1. goal of supervised learning
2. regression model
3. parametric method: linear regression
4. polynomial regression
5. overfitting and underfitting
6. bias/variance trade-off
7. bias/variance trade-off
8. training and test sets
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2. Supervised learning (regression)

2.1. goal of supervised learning

Goal of supervised learning
⇒ learn a function f which maps low-level image features (X) to high-level image information (Y ):

→ classification task ⇒ extract semantic classes (output=nominal number)
→ regression task ⇒ extract measurements (output=continuous number)

band 1
band 2

band 3

IMAGE
(ex: multispectral satellite image)

FEATURES
(ex: NDVI index)

CLASSIFICATION task
(ex: classify vegetation vs. non-vegetation)

REGRESSION task
(ex: estimate vegetation health (y) from NDVI (x)

low-level feature (ex: NDVI)
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output = f(input)
Supervised Learning

Y = f(X)

water lava

*the term “feature” is here used in a broad sense, referring to any information extracted from the image 18 / 42



2. Supervised learning (regression)

2.2. regression model

Regression model

⇒ we assume that two variables X & Y are ideally related by a function f :

Y = f (X) + ϵ

where:
• X = input variable (a.k.a. independent variable, or feature)
• Y = output variable (a.k.a. dependent variable, or target variable)
• ϵ = random error (intrinsic dataset error)

19 / 42



2. Supervised learning (regression)

2.2. regression model

Regression model

⇒ goal: learn the prediction function f̂ using a set of training samples (i.e. pairs of (xi , yi))

xi

yi

⇒ how: minimize a criterion (a.k.a. the prediction error or cost function), which measures how well the
predicted function f fits our training samples
→ for regression models, this metric is typically the Mean Squared Error (MSE):

MSE(f̂ ) =
1
n

n∑
i=1

(yi − f̂ (xi ))2
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2. Supervised learning (regression)

2.2. regression model

Regression model

⇒ minimizing the MSE means finding function f̂ that best fits the training samples

MSE(f̂ ) = 1
n

n∑
i=1

(yi − f̂ (xi))2

f̂ = argminf ∈MMSE(f )

xi

yi

xi

yi
(xi)

(xi)

low MSEhigh MSE

minimize MSE

* the expression argminf ∈M is mathematical notation for “the argument of the minimum”, indicating we are trying to find the
function f from a set of possible functions M that minimizes the MSE 22 / 42



2. Supervised learning (regression)

2.3. parametric method: linear regression

Parametric method: linear regression

⇒ parametric supervised learning means we assume that f̂ takes a specific form, for example a linear
relationship between X and Y :

f̂ (x) = αx + β

⇒ the prediction error MSE(f̂ ) therefore depends on 2 parameters (α, β) which need to be determined:

E(α, β) = 1
n

n∑
i=1

(yi − f̂ (xi))2

= 1
n

n∑
i=1

(yi − (αxi + β))2

⇒ solution: solving for dE/dα = 0 and dE/dβ = 0 allows for an analytical solution of (α̂, β̂):

α̂ =

∑
i (xi − x̄)(yi − ȳ)∑

i (xi − x̄)2 =
(X − X̄) · (Y − Ȳ )
(X − X̄) · (X − X̄)

=
cov(X , Y )

var(X)

β̂ = ȳ − α̂x̄

where x̄ and ȳ are the mean of x and y :
x̄ = 1

n
∑n

i=1 xi and ȳ = 1
n
∑n

i=1 yi

23 / 42



2. Supervised learning (regression)

2.3. parametric method: linear regression

Parametric method: linear regression

⇒ parametric supervised learning means we assume that f̂ takes a specific form, for example a linear
relationship between X and Y :

f̂ (x) = αx + β

⇒ the prediction error MSE(f̂ ) therefore depends on 2 parameters (α, β) which need to be determined:

E(α, β) = 1
n

n∑
i=1

(yi − f̂ (xi))2

= 1
n

n∑
i=1

(yi − (αxi + β))2

⇒ solution: solving for dE/dα = 0 and dE/dβ = 0 allows for an analytical solution of (α̂, β̂):

α̂ =

∑
i (xi − x̄)(yi − ȳ)∑
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n
∑n

i=1 yi

24 / 42



2. Supervised learning (regression)

2.3. parametric method: linear regression

Parametric method: linear regression

⇒ parametric supervised learning means we assume that f̂ takes a specific form, for example a linear
relationship between X and Y :

f̂ (x) = αx + β

⇒ the prediction error MSE(f̂ ) therefore depends on 2 parameters (α, β) which need to be determined:

E(α, β) = 1
n

n∑
i=1

(yi − f̂ (xi))2

= 1
n

n∑
i=1

(yi − (αxi + β))2

⇒ solution: solving for dE/dα = 0 and dE/dβ = 0 allows for an analytical solution of (α̂, β̂):

α̂ =

∑
i (xi − x̄)(yi − ȳ)∑

i (xi − x̄)2 =
(X − X̄) · (Y − Ȳ )
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2. Supervised learning (regression)

2.3. parametric method: linear regression

The analytical solutions for (α, β) can be found using the normal equation:
⇒ the linear equation for a dataset with n observations is written as:

Y = αX + β where:
• X =

(
x1
...

xn

)
= nx1 vector of observed values xi ; Y =

(
y1
...

yn

)
= nx1 vector of observed values yi

• α = slope of the line
• β = intercept

⇒ the linear equation can be written in matrix form:

Y = Xθ where:

• X =

(
1 x1
...

...
1 xn

)
= nx2 matrix of ones & values of xi ; Y =

(
y1
...

yn

)
= nx1 vector of values yi

NB: the first column in X are all ones to account for the intercept β

• θ =
(

β
α

)
= 2x1 vector of coefficients (β, α)

⇒ now θ̂ = (β̂, α̂) is estimated by minimizing the least squares error, which results in the following solution:

θ̂ = (X T X)−1X T Y
26 / 42



2. Supervised learning (regression)

2.3. parametric method: linear regression

⇒ Error surface of the coefficients (α, β) and estimated values (α̂, β̂):

X

Y

f(X)= X + 
= 1.5
= 5.0

f(X)= X + 
= 1.4
= 6.3

2 0 2 4 6 8

E

= 1.4

E( )

5 0 5 10 15 20

E

= 6.3

E( )

⇒ Note: the error surface is convex, which means a unique minimum exists
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2. Supervised learning (regression)

2.4. polynomial regression

What if linear regression is not enough?

⇒ polynomial regression is a form of linear regression, where the relationship between the independent
variable X and the dependent variable Y is modeled as an nth degree polynomial:

f̂ (x) = α0 + α1x1 + α2x2 + . . . + αnxn

X

Y

polynomial fit (10th degree)
linear fit

29 / 42



2. Supervised learning (regression)

2.4. polynomial regression

Polynomial regression as a linear model

⇒ polynomial regression is a form of linear regression, where the relationship between the independent
variable X and the dependent variable Y is modeled as an nth degree polynomial:

f̂ (x) = α0 + α1x1 + α2x2 + . . . + αnxn

→ we are effectively mapping the feature x in a higher dimensional feature space x ′ = (x , ..., xn)

→ if we treat xn as a new features, we can think of this as a linear equation in the transformed feature space:

y = α0 + α1 · (new feature 1) + ... + αn · (new feature n)

→ this allows us to use linear regression to fit the polynomial model!
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2. Supervised learning (regression)

2.4. polynomial regression

Polynomial regression as a linear model

⇒ linearity in terms of coefficients allows us to use linear regression to fit polynomial data of degree d :
→ the equation is non-linear with respect to x because of the higher-order terms (x2, . . . , xd )

⇒ the model can capture non-linear relationships between X and Y

→ however, the equation is linear with respect to the coefficients (α0, . . . , αd )
⇒ the model can be solved using linear regression (coefficients found analytically using the normal equation):

θ̂ = (XT X)−1XT Y where:

• X =

(1 x1 x2
1 · · · xd

1
...

...
...

. . .
...

1 xn x2
n · · · xd

n

)
= n × (d + 1) matrix of ones and powers of xi

• Y =

(
y1
...

yn

)
= n × 1 vector of values yi

• θ̂ =

(
α0
...

αd

)
= (d + 1) × 1 vector of coefficients αi
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2. Supervised learning (regression)

2.4. polynomial regression

Polynomial regression as a linear model

⇒ advantages: can model non-linear relationships, more flexible than linear regression
⇒ drawbacks: more complex, more prone to overfitting

X

Y

polynomial fit (10th degree)
linear fit
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2. Supervised learning (regression)

2.5. overfitting and underfitting

What is overfitting & underfitting?

overfitting ⇒ model is too complex

→ captures the noise in the training data
→ does not generalize well to new data

X

Y

good fit

X

Y

overfitting

underfitting ⇒ model is too simple

→ does not capture the underlying structure
of the data

X

Y

good fit

X

Y

underfitting

⇒ optimal model complexity & ability to generalize to unseen data?
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2. Supervised learning (regression)

2.7. bias/variance trade-off

Bias-variance trade-off
A model’s generalization error can be expressed as the sum of three different errors:

• irreducible error: error due to the noisiness of the data itself

• bias: error due to overly simplistic assumptions in the model
→ high-bias model ⇒ model is too simple (e.g., linear model for quadratic data), prone to underfitting

• variance: error due to excessive sensitivity to small fluctuations in the training data
→ high-variance model ⇒ model with many degrees of freedom (e.g. high-deg. polynomial), prone to overfitting

high-bias
(model too simple)

underfitting

high-variance
(model too complex)

overfitting
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2. Supervised learning (regression)

2.7. bias/variance trade-off

Bias-variance trade-off

⇒ as the model complexity increases, bias decreases but variance increases
⇒ the optimal model complexity results from a trade-off between bias and variance:

high-bias
(model too simple)

model complexity

pr
ed
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tio
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bias variance

op
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el

to
ta

l e
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r

high-variance
(model too complex)

underfitting overfittingoptimal
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2. Supervised learning (regression)

2.8. training and test sets

How can we evaluate the model capability to generalize?

⇒ we divide the dataset into 2 subsets (sometimes more, we’ll see that later):
• training set: used to train the model (i.e. estimate the coefficients)
• test set: used to evaluate the model’s performance on unseen data

X

Y

training data
test data Training

66.7%

Test

33.3%
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2. Supervised learning (regression)

2.8. training and test sets

How can we evaluate the model capability to generalize?

⇒ with increasing model complexity, the training error decreases, while the test error first decreases,
then increases

X

Y

training data
test data
test error

low-complexity model

X

Y

training data
test data
test error

optimal-complexity model

X

Y

training data
test data
test error

high-complexity model
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2. Supervised learning (regression)

2.8. training and test sets

How can we evaluate the model capability to generalize?

⇒ with increasing model complexity, the training error decreases, while the test error first decreases,
then increases

model complexity
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validation error

training error

high bias
low variance

underfitting
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low bias
high variance
overfitting
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