Lecture 08 Machine Learning 2: classification (part 1)

2024-10-09

Sébastien Valade

- 2. [Probabilistic classification](#page-10-0)
- 3. [Non-probabilistic classification](#page-27-0)

Last week: regression (ML1)

Introduction

Last week: regression (ML1) This week: classification part-1 (ML2)

Introduction

Reminder:

- the goal of **supervised learning** is to learn a function f which maps low-level image features (X) to high-level image information (Y) , using training data (i.e. known pairs of (X_i, Y_i)):
	- → **classification task** ⇒ extract semantic classes (output=discrete labels, categorical values)
	- \rightarrow **regression task** \Rightarrow extract measurements (output=continuous number)

*the term "feature" is here used in a broad sense, referring to any information extracted from the image $5/37$

CLASSIFICATION task (ex: classify vegetation vs. non-vegetation)

What is classification?

- ⇒ the goal of **classification** is to assign **class labels** Y (i.e., discrete categorical values) to data points (e.g., pixels, images)
- ⇒ extracting **features** from the data is useful to find a space where samples from different classes are well separable (feature crafting can be either manual, or learned from the data using *unsupervised learning*, e.g. PCA)
- ⇒ the classification algorithm will have to learn the **decision boundary** in an N-dimensional **feature space**

What is classification?

- ⇒ the goal of **classification** is to assign **class labels** Y (i.e., discrete categorical values) to data points (e.g., pixels, images)
- ⇒ extracting **features** from the data is useful to find a space where samples from different classes are well separable (feature crafting can be either manual, or learned from the data using *unsupervised learning*, e.g. PCA)
- ⇒ the classification algorithm will have to learn the **decision boundary** in an N-dimensional **feature space**

Toy example: classify fruit images into either bananas or apples

How is the decision boundary learned?

- ⇒ the **decision boundary** is the surface that separates the feature space into different regions corresponding to different classes
- \Rightarrow many algorithms exist to learn this boundary:
	- probabilistic approaches:
		- **Logistic Regression** \Rightarrow estimates the probability of a class using a logistic function, fitting a linear decision
		- **Softmax Regression** ⇒ a multi-class extension of logistic regression that assigns probabilities to each class
		- **Naive Bayes** ⇒ based on Bayes' theorem, uses probabilistic reasoning to calculate the likelihood of class
	- deterministic approaches:
		- **Perceptron** ⇒ a linear classifier that finds a hyperplane to separate classes, adjusting weights based on
		- **k-Nearest Neighbors (kNN)** ⇒ non-parametric method that classifies based on the majority class of the
		- **Support Vector Machines (SVM)** ⇒ next lectures
		- **Random Forest** ⇒ next lectures
		- **Convolutional Neural Networks (CNNs)** ⇒ next lectures

How is the decision boundary learned?

- ⇒ the **decision boundary** is the surface that separates the feature space into different regions corresponding to different classes
- \Rightarrow many algorithms exist to learn this boundary:
	- probabilistic approaches:
		- **Logistic Regression** ⇒ estimates the probability of a class using a logistic function, fitting a linear decision boundary (binary classification)
		- **Softmax Regression** ⇒ a multi-class extension of logistic regression that assigns probabilities to each class and fits linear boundaries between them
		- **Naive Bayes** ⇒ based on Bayes' theorem, uses probabilistic reasoning to calculate the likelihood of class membership
	- - **Perceptron** \Rightarrow a linear classifier that finds a hyperplane to separate classes, adjusting weights based on
		- **k-Nearest Neighbors (kNN)** ⇒ non-parametric method that classifies based on the majority class of the
		- **Support Vector Machines (SVM)** ⇒ next lectures
		- **Random Forest** ⇒ next lectures
		- **Convolutional Neural Networks (CNNs)** ⇒ next lectures

How is the decision boundary learned?

- ⇒ the **decision boundary** is the surface that separates the feature space into different regions corresponding to different classes
- \Rightarrow many algorithms exist to learn this boundary:
	- probabilistic approaches:
		- **Logistic Regression** ⇒ estimates the probability of a class using a logistic function, fitting a linear decision boundary (binary classification)
		- **Softmax Regression** ⇒ a multi-class extension of logistic regression that assigns probabilities to each class and fits linear boundaries between them
		- **Naive Bayes** ⇒ based on Bayes' theorem, uses probabilistic reasoning to calculate the likelihood of class membership
	- deterministic approaches:
		- **Perceptron** ⇒ a linear classifier that finds a hyperplane to separate classes, adjusting weights based on misclassified points. Similar to logistic regression but non-probabilistic
		- **k-Nearest Neighbors (kNN)** ⇒ non-parametric method that classifies based on the majority class of the nearest neighbors, leading to non-linear boundaries
		- **Support Vector Machines (SVM)** ⇒ next lectures
		- **Random Forest** ⇒ next lectures
		- **Convolutional Neural Networks (CNNs)** ⇒ next lectures

2. [Probabilistic classification](#page-10-0)

- 1. [Logistic Regression](#page-11-0)
- 2. [Softmax Regression](#page-23-0)
- 3. [Non-probabilistic classification](#page-27-0)

Logistic Regression

- Linear Regression (recap)
	- \Rightarrow used to predict continuous values of Y given X
	- \Rightarrow models the relationship between X and Y as a linear equation: $Y = \beta_0 + \beta_1 X$
	- \Rightarrow best model parameters (β_0 , β_1) are found by minimizing Mean Squared Error (MSE)

• Logistic Regression

- \Rightarrow used to predict binary class values (discrete categorical values $y \in 0, 1$) of a data point, given features (X, Y)
- \Rightarrow models a probability function using the *logistic function*:
	- $p(y=1|X)=\frac{1}{1+e^{-(\beta_0+\beta_1 X)}}$
- \Rightarrow best model parameters (β_0 , β_1) are found by

Logistic Regression

- Linear Regression (recap)
	- \Rightarrow used to predict continuous values of Y given X
	- \Rightarrow models the relationship between X and Y as a linear equation: $Y = \beta_0 + \beta_1 X$
	- \Rightarrow best model parameters (β_0, β_1) are found by minimizing Mean Squared Error (MSE)

• Logistic Regression

- \Rightarrow used to predict binary class values (discrete categorical values $y \in [0, 1]$ of a data point, given features (X, Y)
- \Rightarrow models a probability function using the *logistic function*: $p(y=1|X) = \frac{1}{1+e^{-(\beta_0+\beta_1 X)}}$
- \Rightarrow best model parameters (β_0 , β_1) are found by maximizing Likelihood

Logistic Regression

⇒ in order to model the binary class probabilities, we use the **logistic function** (a.k.a. sigmoid function, S-shaped curve), which maps any real value of feature X to the range $[0,1]$:

$$
\sigma(X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X)}} = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}
$$

Logistic Regression

⇒ in order to model the binary class probabilities, we use the **logistic function** (a.k.a. sigmoid function, S-shaped curve), which maps any real value of feature X to the range $[0,1]$:

$$
\sigma(X) = \frac{1}{1+e^{-(\beta_0+\beta_1 X)}} = \frac{e^{\beta_0+\beta_1 X}}{1+e^{\beta_0+\beta_1 X}} = \frac{1}{1+e^{-\theta^\top X}}
$$

$$
\text{with:} \quad \theta = \begin{bmatrix} \beta_0, \beta_1 \end{bmatrix} \quad \text{and} \quad X = \begin{bmatrix} 1, X \end{bmatrix}
$$

 \Rightarrow the probability p is then calculated as:

$$
p(y = 1|X) = \sigma(X)
$$

$$
p(y = 0|X) = 1 - \sigma(X)
$$

 \Rightarrow the prediction of the class $\hat{v} \in \{0, 1\}$ is made by comparing the probability $p(X)$ to a threshold (e.g. 0.5):

$$
\hat{y} = \begin{cases} 1 & \text{if } p(X) \geq 0.5 \\ 0 & \text{otherwise} \end{cases}
$$

Logistic Regression

EX: estimate data point class $\hat{y} \in \{0|1\}$ from estimated probabilities $p(y|Y)$

Logistic Regression

<u>EX</u>: estimate data point class $\hat{y} = \{0|1\}$ from estimated probabilities $p(y|Y)$

Logistic Regression

\Rightarrow the coefficients β_0 and β_1 are unknown, and must be estimated based on the available training data

⇒ the coefficients are estimated by using the **maximum likelihood function**

- \rightarrow find best estimates of β_0 and β_1 , such that the predicted probability $\hat{p}(x_i)$ for each data point returns as closely as possible to the expected class
- this can be formalized using a mathematical equation called a likelihood function:

$$
L(\beta_0, \beta_1) = \prod_{i: y_i = 1} p(x_i) \prod_{i: y_i = 0} (1 - p(x_i))
$$

the maximization of the likelihood function allows for the estimation of the best parameters $β_0$ and $β_1$:

$$
\hat{\beta}_0,\hat{\beta}_1=\arg\max_{\beta_0,\beta_1}L(\beta_0,\beta_1)
$$

Logistic Regression

- \Rightarrow the coefficients β_0 and β_1 are unknown, and must be estimated based on the available training data
- ⇒ the coefficients are estimated by using the **maximum likelihood function**
	- \rightarrow find best estimates of β_0 and β_1 , such that the predicted probability $\hat{p}(x_i)$ for each data point returns as closely as possible to the expected class
	- this can be formalized using a mathematical equation called a likelihood function:

$$
L(\beta_0, \beta_1) = \prod_{i: y_i = 1} p(x_i) \prod_{i: y_i = 0} (1 - p(x_i))
$$

the maximization of the likelihood function allows for the estimation of the best parameters $β_0$ and $β_1$:

$$
\hat{\beta}_0,\hat{\beta}_1=\arg\max_{\beta_0,\beta_1}L(\beta_0,\beta_1)
$$

Logistic Regression

- \Rightarrow the coefficients β_0 and β_1 are unknown, and must be estimated based on the available training data
- ⇒ the coefficients are estimated by using the **maximum likelihood function**
	- \rightarrow find best estimates of β_0 and β_1 , such that the predicted probability $\hat{p}(x_i)$ for each data point returns as closely as possible to the expected class
	- \rightarrow this can be formalized using a mathematical equation called a likelihood function:

$$
L(\beta_0, \beta_1) = \prod_{i: y_i = 1} p(x_i) \prod_{i: y_i = 0} (1 - p(x_i))
$$

the maximization of the likelihood function allows for the estimation of the best parameters $β_0$ and $β_1$:

$$
\hat{\beta}_0, \hat{\beta}_1 = \arg\max_{\beta_0, \beta_1} L(\beta_0, \beta_1)
$$

Logistic Regression

- \Rightarrow the coefficients β_0 and β_1 are unknown, and must be estimated based on the available training data
- ⇒ the coefficients are estimated by using the **maximum likelihood function**
	- \rightarrow find best estimates of β_0 and β_1 , such that the predicted probability $\hat{p}(x_i)$ for each data point returns as closely as possible to the expected class
	- \rightarrow this can be formalized using a mathematical equation called a likelihood function:

$$
L(\beta_0, \beta_1) = \prod_{i: y_i = 1} p(x_i) \prod_{i: y_i = 0} (1 - p(x_i))
$$

the maximization of the likelihood function allows for the estimation of the best parameters β_0 and β_1 :

$$
\hat{\beta}_0, \hat{\beta}_1 = \arg\max_{\beta_0, \beta_1} L(\beta_0, \beta_1)
$$

NB: we could also use least squares to fit the model, but the maximum likelihood is preferred because it has better statistical properties

- \Rightarrow Logistic Regression can also be used to to predict a binary response but using multiple predictors (in the previous slides, the binary class prediction was done using just the 1 feature Y)
- \Rightarrow if we consider k predictors, the model is then defined as:

$$
p(X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k)}} = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k}}
$$

NB: the classification results obtained using one predictor or several may be quite different, especially when there is correlation among the predictors!

⇒ nevertheless, **Logistic Regression** is limited as it can only model **binary classification**! ⇒ for **multi-class classification**, we need to use **Softmax Regression**

- \Rightarrow Logistic Regression can also be used to to predict a binary response but using multiple predictors (in the previous slides, the binary class prediction was done using just the 1 feature Y)
- \Rightarrow if we consider k predictors, the model is then defined as:

$$
p(X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k)}} = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k}}
$$

NB: the classification results obtained using one predictor or several may be quite different, especially when there is correlation among the predictors!

⇒ nevertheless, **Logistic Regression** is limited as it can only model **binary classification**! ⇒ for **multi-class classification**, we need to use **Softmax Regression**

Softmax Regression

⇒ the **Softmax Regression** (a.k.a. Multinomial Logistic Regression) generalizes the logistic regression for multiple classes, by calculating probabilities $p(y)$ for each class $y \in \{1, ..., K\}$

$$
p(y = k | X; \theta) = \frac{\exp(\theta^{(k) \top} X)}{\sum_{j=1}^{K} \exp(\theta^{(j) \top} X)}
$$
 where $\begin{cases} \text{the numerator gives the exponentiated score for each class } k \\ \text{the denominator normalizes the scores into a valid probability distribution} \end{cases}$

In other words:

$$
\begin{bmatrix} \rho(y=1|X;\theta) \\ \rho(y=2|X;\theta) \\ \vdots \\ \rho(y=K|X;\theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{K} \exp(\theta^{(j)\top}X)} \begin{bmatrix} \exp(\theta^{(1)\top}X) \\ \exp(\theta^{(2)\top}X) \\ \vdots \\ \exp(\theta^{(K)\top}X) \end{bmatrix} \qquad \text{where } \theta^{(1)}, \theta^{(2)}, \dots, \theta^{(K)} \text{ are the model parameters}
$$

 \Rightarrow like with the Logistic Regression classifier, the Softmax Regression classifier predicts the class with the highest estimated probability:

$$
\hat{y} = \arg\max_{k} p(y = k|X; \theta)
$$

Softmax Regression

⇒ the **Softmax Regression** (a.k.a. Multinomial Logistic Regression) generalizes the logistic regression for multiple classes, by calculating probabilities $p(y)$ for each class $y \in \{1, ..., K\}$

$$
p(y = k | X; \theta) = \frac{\exp(\theta^{(k)\top} X)}{\sum_{j=1}^K \exp(\theta^{(j)\top} X)}
$$
 where $\begin{cases} \text{the numerator gives the exponentiated score for each class } k \\ \text{the denominator normalizes the scores into a valid probability distribution} \end{cases}$

In other words:

$$
\begin{bmatrix} p(y=1|X;\theta) \\ p(y=2|X;\theta) \\ \vdots \\ p(y=K|X;\theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^K \exp(\theta^{(j)\top}X)} \begin{bmatrix} \exp(\theta^{(1)\top}X) \\ \exp(\theta^{(2)\top}X) \\ \vdots \\ \exp(\theta^{(K)\top}X) \end{bmatrix} \qquad \text{where } \theta^{(1)}, \theta^{(2)}, \dots, \theta^{(K)} \text{ are the model parameters}
$$

 \Rightarrow like with the Logistic Regression classifier, the Softmax Regression classifier predicts the class with the highest estimated probability:

$$
\hat{y} = \arg\max_{k} p(y = k|X; \theta)
$$

Softmax Regression

⇒ the **Softmax Regression** (a.k.a. Multinomial Logistic Regression) generalizes the logistic regression for multiple classes, by calculating probabilities $p(y)$ for each class $y \in \{1, ..., K\}$

$$
p(y = k | X; \theta) = \frac{\exp(\theta^{(k) \top X})}{\sum_{j=1}^{K} \exp(\theta^{(j) \top X})}
$$
 where $\begin{cases} \text{the numerator gives the exponentiated score for each class } k \\ \text{the denominator normalizes the scores into a valid probability distribution} \end{cases}$

In other words:

$$
\begin{bmatrix} p(y=1|X;\theta) \\ p(y=2|X;\theta) \\ \vdots \\ p(y=K|X;\theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^K \exp(\theta^{(j)\top}X)} \begin{bmatrix} \exp(\theta^{(1)\top}X) \\ \exp(\theta^{(2)\top}X) \\ \vdots \\ \exp(\theta^{(K)\top}X) \end{bmatrix} \qquad \text{where } \theta^{(1)}, \theta^{(2)}, \dots, \theta^{(K)} \text{ are the model parameters}
$$

 \Rightarrow like with the Logistic Regression classifier, the Softmax Regression classifier predicts the class with the highest estimated probability:

$$
\hat{y} = \arg\max_{k} p(y = k|X; \theta)
$$

Softmax Regression

EX: estimate data point class $\hat{y} \in \{0, 1, 2\}$

⇒ **Softmax Regression** finds linear boundaries between multiple classes \rightarrow it is commonly used as the final layer in **neural networks** for classification tasks

2. [Probabilistic classification](#page-10-0)

3. [Non-probabilistic classification](#page-27-0)

- 1. [k-Nearest Neighbors \(kNN\)](#page-28-0)
- 2. [other classifiers](#page-36-0)

kNN classification

⇒ Idea: **classify** a data point based on the majority class of its k **Nearest Neighbors** ⇒ Method:

-
-
-
-

kNN classification

- ⇒ Idea: **classify** a data point based on the majority class of its k **Nearest Neighbors**
- ⇒ Method:

1. take random data points in the training dataset

- 2. for a sample find the k (e.g. 5) closest data points in the training dataset $(k$ is a hyperparameter)
- 3. look at the neighbor labels, return/assign the mode
- 4. non-linear decision boundary can be recovered

kNN classification

- ⇒ Idea: **classify** a data point based on the majority class of its k **Nearest Neighbors**
- ⇒ Method:

- 1. take random data points in the training dataset
- 2. for a sample find the k (e.g. 5) closest data points in the training dataset $(k \text{ is a hyperparameter})$
- 3. look at the neighbor labels, return/assign the mode
- 4. non-linear decision boundary can be recovered

kNN classification

- ⇒ Idea: **classify** a data point based on the majority class of its k **Nearest Neighbors**
- ⇒ Method:

- 1. take random data points in the training dataset
- 2. for a sample find the k (e.g. 5) closest data points in the training dataset $(k \text{ is a hyperparameter})$
- 3. look at the neighbor labels, return/assign the mode
- 4. non-linear decision boundary can be recovered

kNN classification

- ⇒ Idea: **classify** a data point based on the majority class of its k **Nearest Neighbors**
- ⇒ Method:

- 1. take random data points in the training dataset
- 2. for a sample find the k (e.g. 5) closest data points in the training dataset $(k \text{ is a hyperparameter})$
- 3. look at the neighbor labels, return/assign the mode
- 4. non-linear decision boundary can be recovered

kNN classification

EX: estimate classification boundary using the kNN algorithm

kNN classification

EX: estimate classification boundary using the kNN algorithm

kNN classification

EX: estimate classification boundary using the kNN algorithm

 \rightarrow Pros: simple, easy to understand, works well with small datasets

 \rightarrow Cons: slow for large datasets, sensitive to choice of distance metric and the value of k

3.2. other classifiers

more on classification next week !

(perceptron, SVM, PCA)