Lecture 08 Machine Learning 2: classification (part 1)

2024-10-09

Sébastien Valade

- 2. Probabilistic classification
- 3. Non-probabilistic classification

Last week: regression (ML1)

source

Introduction

Last week: regression (ML1) This week: classification *part-1* (ML2)

source

Introduction

Reminder:

- ⇒ the goal of **supervised learning** is to learn a function f which maps low-level image features (X) to high-level image information (Y), using training data (i.e. known pairs of (X_i, Y_i)):
 - \rightarrow classification task \Rightarrow extract semantic classes (output=discrete labels, categorical values)
 - \rightarrow regression task \Rightarrow extract measurements (output=continuous number)

*the term "feature" is here used in a broad sense, referring to any information extracted from the image

CLASSIFICATION task

(ex: classify vegetation vs. non-vegetation)

-	Look of a short water of	
1.	Introduction	

What is classification?

- \Rightarrow the goal of **classification** is to assign **class labels** Y (i.e., discrete categorical values) to data points (e.g., pixels, images)
- ⇒ extracting **features** from the data is useful to find a space where samples from different classes are well separable (feature crafting can be either manual, or learned from the data using *unsupervised learning*, e.g. PCA)
- \Rightarrow the classification algorithm will have to learn the **decision boundary** in an *N*-dimensional **feature space**

1.	Introduction
÷.	meroduction

What is classification?

- \Rightarrow the goal of **classification** is to assign **class labels** Y (i.e., discrete categorical values) to data points (e.g., pixels, images)
- ⇒ extracting **features** from the data is useful to find a space where samples from different classes are well separable (feature crafting can be either manual, or learned from the data using *unsupervised learning*, e.g. PCA)
- \Rightarrow the classification algorithm will have to learn the **decision boundary** in an *N*-dimensional **feature space**

Toy example: classify fruit images into either bananas or apples

How is the decision boundary learned?

- \Rightarrow the **decision boundary** is the surface that separates the feature space into different regions corresponding to different classes
- \Rightarrow many algorithms exist to learn this boundary:
 - probabilistic approaches:
 - Logistic Regression ⇒ estimates the probability of a class using a logistic function, fitting a linear decision boundary (binary classification)
 - Softmax Regression ⇒ a multi-class extension of logistic regression that assigns probabilities to each class and fits linear boundaries between them
 - Naive Bayes ⇒ based on Bayes' theorem, uses probabilistic reasoning to calculate the likelihood of class membership
 - deterministic approaches:
 - Perceptron ⇒ a linear classifier that finds a hyperplane to separate classes, adjusting weights based on misclassified points. Similar to logistic regression but non-probabilistic
 - k-Nearest Neighbors (kNN) ⇒ non-parametric method that classifies based on the majority class of the nearest neighbors, leading to non-linear boundaries
 - Support Vector Machines (SVM) ⇒ next lectures
 - Random Forest ⇒ next lectures
 - Convolutional Neural Networks (CNNs) ⇒ next lectures

How is the decision boundary learned?

- \Rightarrow the **decision boundary** is the surface that separates the feature space into different regions corresponding to different classes
- \Rightarrow many algorithms exist to learn this boundary:
 - probabilistic approaches:
 - Logistic Regression ⇒ estimates the probability of a class using a logistic function, fitting a linear decision boundary (binary classification)
 - Softmax Regression ⇒ a multi-class extension of logistic regression that assigns probabilities to each class and fits linear boundaries between them
 - Naive Bayes ⇒ based on Bayes' theorem, uses probabilistic reasoning to calculate the likelihood of class membership
 - deterministic approaches:
 - Perceptron ⇒ a linear classifier that finds a hyperplane to separate classes, adjusting weights based on misclassified points. Similar to logistic regression but non-probabilistic
 - k-Nearest Neighbors (kNN) ⇒ non-parametric method that classifies based on the majority class of the nearest neighbors, leading to non-linear boundaries
 - Support Vector Machines (SVM) ⇒ next lectures
 - Random Forest ⇒ next lectures
 - Convolutional Neural Networks (CNNs) ⇒ next lectures

How is the decision boundary learned?

- \Rightarrow the **decision boundary** is the surface that separates the feature space into different regions corresponding to different classes
- \Rightarrow many algorithms exist to learn this boundary:
 - probabilistic approaches:
 - Logistic Regression ⇒ estimates the probability of a class using a logistic function, fitting a linear decision boundary (binary classification)
 - Softmax Regression ⇒ a multi-class extension of logistic regression that assigns probabilities to each class and fits linear boundaries between them
 - Naive Bayes ⇒ based on Bayes' theorem, uses probabilistic reasoning to calculate the likelihood of class membership

deterministic approaches:

- Perceptron ⇒ a linear classifier that finds a hyperplane to separate classes, adjusting weights based on misclassified points. Similar to logistic regression but non-probabilistic
- k-Nearest Neighbors (kNN) ⇒ non-parametric method that classifies based on the majority class of the nearest neighbors, leading to non-linear boundaries
- Support Vector Machines (SVM) \Rightarrow next lectures
- Random Forest \Rightarrow next lectures
- Convolutional Neural Networks (CNNs) \Rightarrow next lectures

2. Probabilistic classification

- 1. Logistic Regression
- 2. Softmax Regression
- 3. Non-probabilistic classification

Logistic Regression

- Linear Regression (recap)
 - $\Rightarrow~$ used to predict continuous values of Y given X
 - ⇒ models the relationship between X and Y as a linear equation: $Y = \beta_0 + \beta_1 X$
 - ⇒ best model parameters (β_0, β_1) are found by minimizing Mean Squared Error (MSE)

Logistic Regression

- ⇒ used to predict binary class values (discrete categorical values $y \in (0, 1)$ of a data point, given features (X, Y)
- \Rightarrow models a probability function using the *logistic function*:

 $y = 1|X) = \frac{1}{1+e^{-(\beta_0 + \beta_1 X)}}$

⇒ best model parameters (β_0, β_1) are found by maximizing Likelihood

Logistic Regression

- Linear Regression (recap)
 - $\Rightarrow~$ used to predict continuous values of Y given X
 - ⇒ models the relationship between X and Y as a linear equation: $Y = \beta_0 + \beta_1 X$
 - ⇒ best model parameters (β_0, β_1) are found by minimizing Mean Squared Error (MSE)

Logistic Regression

- ⇒ used to predict binary class values (discrete categorical values $y \in 0, 1$) of a data point, given features (X, Y) ⇒ models a probability function using the *logistic function*:
 - $p(y = 1|X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X)}}$
- \Rightarrow best model parameters (β_0, β_1) are found by maximizing Likelihood

Logistic Regression

 \Rightarrow in order to model the binary class probabilities, we use the <u>logistic function</u> (a.k.a. sigmoid function, S-shaped curve), which maps any real value of feature X to the range [0,1]:

$$\sigma(X) = rac{1}{1+e^{-(eta_0+eta_1X)}} = rac{e^{eta_0+eta_1X}}{1+e^{eta_0+eta_1X}}$$

Logistic Regression

 \Rightarrow in order to model the binary class probabilities, we use the logistic function (a.k.a. sigmoid function, S-shaped curve), which maps any real value of feature X to the range [0,1]:

$$\sigma(X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X)}} = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} = \frac{1}{1 + e^{-\theta^\top X}}$$

with:
$$\theta = [\beta_0, \beta_1]$$
 and $X = [1, X]$

 \Rightarrow the probability *p* is then calculated as:

$$p(y = 1|X) = \sigma(X)$$
$$p(y = 0|X) = 1 - \sigma(X)$$

⇒ the prediction of the class $\hat{y} \in \{0,1\}$ is made by comparing the probability p(X) to a threshold (e.g. 0.5):

$$\hat{y} = \begin{cases} 1 & \text{if } p(X) \ge 0.5 \\ 0 & \text{otherwise} \end{cases}$$

<u>EX</u>: estimate data point class $\hat{y} \in \{0|1\}$ from estimated probabilities p(y|Y)

Logistic Regression

<u>EX</u>: estimate data point class $\hat{y} = \{0|1\}$ from estimated probabilities p(y|Y)

\Rightarrow the coefficients β_0 and β_1 are unknown, and must be estimated based on the available training data

\Rightarrow the coefficients are estimated by using the maximum likelihood function

- \rightarrow find best estimates of β_0 and β_1 , such that the predicted probability $\hat{p}(x_i)$ for each data point returns as closely as possible to the expected class
- \rightarrow this can be formalized using a mathematical equation called a likelihood function:

$$L(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1 - p(x_i))$$

 $ightarrow \,$ the maximization of the likelihood function allows for the estimation of the best parameters eta_0 and eta_1 :

$$\hat{eta}_0, \hat{eta}_1 = rg\max_{eta_0, eta_1} L(eta_0, eta_1)$$

NB: we could also use least squares to fit the model, but the maximum likelihood is preferred because it has better statistical properties

Logistic Regression

- \Rightarrow the coefficients β_0 and β_1 are unknown, and must be estimated based on the available training data
- $\Rightarrow\,$ the coefficients are estimated by using the maximum likelihood function
 - \rightarrow find best estimates of β_0 and β_1 , such that the predicted probability $\hat{p}(x_i)$ for each data point returns as closely as possible to the expected class
 - \rightarrow this can be formalized using a mathematical equation called a likelihood function:

$$L(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1 - p(x_i))$$

 $ightarrow \,$ the maximization of the likelihood function allows for the estimation of the best parameters eta_0 and eta_1 :

$$\hat{eta}_0, \hat{eta}_1 = rg\max_{eta_0, eta_1} L(eta_0, eta_1)$$

NB: we could also use least squares to fit the model, but the maximum likelihood is preferred because it has better statistical properties

Logistic Regression

- \Rightarrow the coefficients β_0 and β_1 are unknown, and must be estimated based on the available training data
- $\Rightarrow\,$ the coefficients are estimated by using the maximum likelihood function
 - \rightarrow find best estimates of β_0 and β_1 , such that the predicted probability $\hat{p}(x_i)$ for each data point returns as closely as possible to the expected class
 - ightarrow this can be formalized using a mathematical equation called a likelihood function:

$$L(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1 - p(x_i))$$

 $ightarrow \,$ the maximization of the likelihood function allows for the estimation of the best parameters eta_0 and eta_1 :

$$\hat{eta}_0, \hat{eta}_1 = rg\max_{eta_0, eta_1} L(eta_0, eta_1)$$

NB: we could also use least squares to fit the model, but the maximum likelihood is preferred because it has better statistical properties

Logistic Regression

- \Rightarrow the coefficients β_0 and β_1 are unknown, and must be estimated based on the available training data
- $\Rightarrow\,$ the coefficients are estimated by using the maximum likelihood function
 - \rightarrow find best estimates of β_0 and β_1 , such that the predicted probability $\hat{p}(x_i)$ for each data point returns as closely as possible to the expected class
 - \rightarrow this can be formalized using a mathematical equation called a likelihood function:

$$L(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1 - p(x_i))$$

 \rightarrow the maximization of the likelihood function allows for the estimation of the best parameters β_0 and β_1 :

$$\hat{eta}_0, \hat{eta}_1 = rg\max_{eta_0,eta_1} L(eta_0,eta_1)$$

<u>NB</u>: we could also use least squares to fit the model, but the maximum likelihood is preferred because it has better statistical properties

- $\Rightarrow \text{Logistic Regression can also be used to to predict a binary response but using multiple predictors} (in the previous slides, the binary class prediction was done using just the 1 feature Y)$
- \Rightarrow if we consider k predictors, the model is then defined as:

$$egin{aligned} p(X) &= rac{1}{1+e^{-(eta_0+eta_1X_1+\dots+eta_kX_k)}} \ &= rac{e^{eta_0+eta_1X_1+\dots+eta_kX_k}}{1+e^{eta_0+eta_1X_1+\dots+eta_kX_k}} \end{aligned}$$

 \underline{NB} : the classification results obtained using one predictor or several may be quite different, especially when there is correlation among the predictors!

 \Rightarrow nevertheless, Logistic Regression is limited as it can only model binary classification! \Rightarrow for multi-class classification, we need to use Softmax Regression

- $\Rightarrow \text{Logistic Regression can also be used to to predict a binary response but using multiple predictors} (in the previous slides, the binary class prediction was done using just the 1 feature Y)$
- \Rightarrow if we consider k predictors, the model is then defined as:

$$egin{aligned} p(X) &= rac{1}{1+e^{-(eta_0+eta_1X_1+\dots+eta_kX_k)}} \ &= rac{e^{eta_0+eta_1X_1+\dots+eta_kX_k}}{1+e^{eta_0+eta_1X_1+\dots+eta_kX_k}} \end{aligned}$$

 \underline{NB} : the classification results obtained using one predictor or several may be quite different, especially when there is correlation among the predictors!

 \Rightarrow nevertheless, Logistic Regression is limited as it can only model binary classification! \Rightarrow for multi-class classification, we need to use Softmax Regression

2.2. Softmax Regression

Softmax Regression

⇒ the **Softmax Regression** (a.k.a. *Multinomial Logistic Regression*) generalizes the logistic regression for multiple classes, by calculating probabilities p(y) for each class $y \in \{1, ..., K\}$

$$p(y = k | X; \theta) = \frac{\exp(\theta^{(k) \top} X)}{\sum_{j=1}^{K} \exp(\theta^{(j) \top} X)}$$

where $\begin{cases} \mbox{the numerator gives the exponentiated score for each class k} \\ \mbox{the denominator normalizes the scores into a valid probability distribution} \end{cases}$

In other words:

$$\begin{bmatrix} p(y = 1|X; \theta) \\ p(y = 2|X; \theta) \\ \vdots \\ p(y = K|X; \theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{K} \exp(\theta^{(j)\top}X)} \begin{bmatrix} \exp(\theta^{(1)\top}X) \\ \exp(\theta^{(2)\top}X) \\ \vdots \\ \exp(\theta^{(K)\top}X) \end{bmatrix}$$
 where $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(K)}$ are the model parameters

⇒ like with the Logistic Regression classifier, the Softmax Regression classifier predicts the class with the highest estimated probability:

$$\hat{y} = \arg\max_{k} p(y = k | X; \theta)$$

2.2. Softmax Regression

Softmax Regression

⇒ the **Softmax Regression** (a.k.a. *Multinomial Logistic Regression*) generalizes the logistic regression for multiple classes, by calculating probabilities p(y) for each class $y \in \{1, ..., K\}$

$$p(y = k | X; \theta) = rac{\exp(heta^{(k) + X})}{\sum_{j=1}^{K} \exp(heta^{(j) \top} X)}$$

where $\begin{cases} \mbox{the numerator gives the exponentiated score for each class k} \\ \mbox{the denominator normalizes the scores into a valid probability distribution} \end{cases}$

In other words:

$$\begin{bmatrix} p(y = 1|X; \theta) \\ p(y = 2|X; \theta) \\ \vdots \\ p(y = K|X; \theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{K} \exp(\theta^{(j)\top}X)} \begin{bmatrix} \exp(\theta^{(1)\top}X) \\ \exp(\theta^{(2)\top}X) \\ \vdots \\ \exp(\theta^{(K)\top}X) \end{bmatrix}$$
 where $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(K)}$ are the model parameters

⇒ like with the Logistic Regression classifier, the Softmax Regression classifier predicts the class with the highest estimated probability:

$$\hat{y} = \arg\max_{k} p(y = k | X; \theta)$$

Softmax Regression

⇒ the **Softmax Regression** (a.k.a. *Multinomial Logistic Regression*) generalizes the logistic regression for multiple classes, by calculating probabilities p(y) for each class $y \in \{1, ..., K\}$

$$p(y = k | X; \theta) = \frac{\exp(\theta^{(k) \top} X)}{\sum_{j=1}^{K} \exp(\theta^{(j) \top} X)} \qquad \text{where } \begin{cases} \text{the numerator gives the exponentiated score for each class k} \\ \text{the denominator normalizes the scores into a valid probability distribution} \end{cases}$$

In other words:

$$\begin{bmatrix} p(y = 1|X; \theta) \\ p(y = 2|X; \theta) \\ \vdots \\ p(y = K|X; \theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{K} \exp(\theta^{(j)\top}X)} \begin{bmatrix} \exp(\theta^{(1)\top}X) \\ \exp(\theta^{(2)\top}X) \\ \vdots \\ \exp(\theta^{(K)\top}X) \end{bmatrix}$$
 where $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(K)}$ are the model parameters

⇒ like with the *Logistic Regression classifier*, the *Softmax Regression classifier* predicts the class with the highest estimated probability:

$$\hat{y} = \arg\max_{k} p(y = k | X; \theta)$$

2.2. Softmax Regression

Softmax Regression

<u>EX</u>: estimate data point class $\hat{y} \in \{0, 1, 2\}$

 \Rightarrow Softmax Regression finds linear boundaries between multiple classes \rightarrow it is commonly used as the final layer in **neural networks** for classification tasks

2. Probabilistic classification

3. Non-probabilistic classification

- 1. k-Nearest Neighbors (kNN)
- 2. other classifiers

kNN classification

 \Rightarrow <u>Idea</u>: classify a data point based on the majority class of its k Nearest Neighbors

- 1. take random data points in the training dataset
- for a sample find the k (e.g. 5) closest data points in the training dataset (k is a hyperparameter)
- 3. look at the neighbor labels, return/assign the mode
- 4. non-linear decision boundary can be recovered

kNN classification

- \Rightarrow <u>Idea</u>: classify a data point based on the majority class of its k Nearest Neighbors
- \Rightarrow <u>Method</u>:

1. take random data points in the training dataset

- for a sample find the k (e.g. 5) closest data points in the training dataset (k is a hyperparameter)
- 3. look at the neighbor labels, return/assign the mode
- 4. non-linear decision boundary can be recovered

kNN classification

- \Rightarrow <u>Idea</u>: classify a data point based on the majority class of its k Nearest Neighbors
- \Rightarrow <u>Method</u>:

- 1. take random data points in the training dataset
- 2. for a sample find the *k* (e.g. 5) closest data points in the training dataset (*k* is a hyperparameter)
- 3. look at the neighbor labels, return/assign the mode
- 4. non-linear decision boundary can be recovered

kNN classification

- \Rightarrow <u>Idea</u>: classify a data point based on the majority class of its k Nearest Neighbors
- \Rightarrow <u>Method</u>:

- 1. take random data points in the training dataset
- 2. for a sample find the *k* (e.g. 5) closest data points in the training dataset (*k* is a hyperparameter)
- 3. look at the neighbor labels, return/assign the mode
- 4. non-linear decision boundary can be recovered

kNN classification

- \Rightarrow <u>Idea</u>: classify a data point based on the majority class of its k Nearest Neighbors
- \Rightarrow <u>Method</u>:

- 1. take random data points in the training dataset
- 2. for a sample find the *k* (e.g. 5) closest data points in the training dataset (*k* is a hyperparameter)
- 3. look at the neighbor labels, return/assign the mode
- 4. non-linear decision boundary can be recovered

kNN classification

EX: estimate classification boundary using the kNN algorithm

kNN classification

EX: estimate classification boundary using the kNN algorithm

kNN classification

EX: estimate classification boundary using the kNN algorithm

 \rightarrow <u>Pros</u>: simple, easy to understand, works well with small datasets

 \rightarrow <u>Cons</u>: slow for large datasets, sensitive to choice of distance metric and the value of k

more on classification next week !

(perceptron, SVM, PCA)