
UNAM - Posgrado en Ciencias de la Tierra - Semestre 2025-1

Lecture 08
Machine Learning 2:

classification (part 1)

2024-10-09

Sébastien Valade

1 / 37

1. Introduction

1. Introduction

2. Probabilistic classification

3. Non-probabilistic classification

2 / 37

1. Introduction

Introduction

Last week: regression (ML1)

This week: classification part-1 (ML2)

ML

ML1

ML 2

source 3 / 37

https://noeliagorod.com/2019/05/21/machine-learning-for-everyone-in-simple-words-with-real-world-examples-yes-again/

1. Introduction

Introduction

Last week: regression (ML1)
This week: classification part-1 (ML2)

ML

ML1ML 2

source 4 / 37

https://noeliagorod.com/2019/05/21/machine-learning-for-everyone-in-simple-words-with-real-world-examples-yes-again/

1. Introduction

Introduction

Reminder:
⇒ the goal of supervised learning is to learn a function f which maps low-level image features (X) to

high-level image information (Y), using training data (i.e. known pairs of (Xi , Yi)):
→ classification task ⇒ extract semantic classes (output=discrete labels, categorical values)
→ regression task ⇒ extract measurements (output=continuous number)

band 1
band 2

band 3

IMAGE
(ex: multispectral satellite image)

FEATURES
(ex: NDVI index)

CLASSIFICATION task
(ex: classify vegetation vs. non-vegetation)

REGRESSION task
(ex: estimate vegetation health (y) from NDVI (x)

low-level feature (ex: NDVI)

hi
gh

-le
ve

l i
nf

or
m

at
io

n
(e

x:
 v

eg
et

at
io

n
he

al
th

)

vegetation

output = f(input)
Supervised Learning

Y = f(X)

water lava

*the term “feature” is here used in a broad sense, referring to any information extracted from the image 5 / 37

1. Introduction

Introduction

What is classification?
⇒ the goal of classification is to assign class labels Y (i.e., discrete categorical values) to data points (e.g.,

pixels, images)

⇒ extracting features from the data is useful to find a space where samples from different classes are well
separable (feature crafting can be either manual, or learned from the data using unsupervised learning, e.g. PCA)

⇒ the classification algorithm will have to learn the decision boundary in an N-dimensional feature space

Toy example: classify fruit images into either bananas or apples
input image

hue (feature 1)

e
lo

n
g

a
tio

n
(fe

a
tu

re
 2

)

spherical

elongated

redyellowgreen

feature space

hue (feature 1)

e
lo

n
g
a
tio

n
(fe

a
tu

re
 2

)

spherical

elongated

redyellowgreen

Decision Boundary

Bananas

Apples
?

decision boundary

6 / 37

1. Introduction

Introduction

What is classification?
⇒ the goal of classification is to assign class labels Y (i.e., discrete categorical values) to data points (e.g.,

pixels, images)

⇒ extracting features from the data is useful to find a space where samples from different classes are well
separable (feature crafting can be either manual, or learned from the data using unsupervised learning, e.g. PCA)

⇒ the classification algorithm will have to learn the decision boundary in an N-dimensional feature space

Toy example: classify fruit images into either bananas or apples
input image

hue (feature 1)

e
lo

n
g

a
tio

n
(fe

a
tu

re
 2

)

spherical

elongated

redyellowgreen

feature space

hue (feature 1)

e
lo

n
g
a
tio

n
(fe

a
tu

re
 2

)

spherical

elongated

redyellowgreen

Decision Boundary

Bananas

Apples
?

decision boundary

7 / 37

1. Introduction

Introduction

How is the decision boundary learned?

⇒ the decision boundary is the surface that separates the feature space into different regions corresponding
to different classes

⇒ many algorithms exist to learn this boundary:
• probabilistic approaches:

- Logistic Regression ⇒ estimates the probability of a class using a logistic function, fitting a linear decision
boundary (binary classification)

- Softmax Regression ⇒ a multi-class extension of logistic regression that assigns probabilities to each class
and fits linear boundaries between them

- Naive Bayes ⇒ based on Bayes’ theorem, uses probabilistic reasoning to calculate the likelihood of class
membership

• deterministic approaches:
- Perceptron ⇒ a linear classifier that finds a hyperplane to separate classes, adjusting weights based on

misclassified points. Similar to logistic regression but non-probabilistic
- k-Nearest Neighbors (kNN) ⇒ non-parametric method that classifies based on the majority class of the

nearest neighbors, leading to non-linear boundaries
- Support Vector Machines (SVM) ⇒ next lectures
- Random Forest ⇒ next lectures
- Convolutional Neural Networks (CNNs) ⇒ next lectures

8 / 37

1. Introduction

Introduction

How is the decision boundary learned?

⇒ the decision boundary is the surface that separates the feature space into different regions corresponding
to different classes

⇒ many algorithms exist to learn this boundary:
• probabilistic approaches:

- Logistic Regression ⇒ estimates the probability of a class using a logistic function, fitting a linear decision
boundary (binary classification)

- Softmax Regression ⇒ a multi-class extension of logistic regression that assigns probabilities to each class
and fits linear boundaries between them

- Naive Bayes ⇒ based on Bayes’ theorem, uses probabilistic reasoning to calculate the likelihood of class
membership

• deterministic approaches:
- Perceptron ⇒ a linear classifier that finds a hyperplane to separate classes, adjusting weights based on

misclassified points. Similar to logistic regression but non-probabilistic
- k-Nearest Neighbors (kNN) ⇒ non-parametric method that classifies based on the majority class of the

nearest neighbors, leading to non-linear boundaries
- Support Vector Machines (SVM) ⇒ next lectures
- Random Forest ⇒ next lectures
- Convolutional Neural Networks (CNNs) ⇒ next lectures

9 / 37

1. Introduction

Introduction

How is the decision boundary learned?

⇒ the decision boundary is the surface that separates the feature space into different regions corresponding
to different classes

⇒ many algorithms exist to learn this boundary:
• probabilistic approaches:

- Logistic Regression ⇒ estimates the probability of a class using a logistic function, fitting a linear decision
boundary (binary classification)

- Softmax Regression ⇒ a multi-class extension of logistic regression that assigns probabilities to each class
and fits linear boundaries between them

- Naive Bayes ⇒ based on Bayes’ theorem, uses probabilistic reasoning to calculate the likelihood of class
membership

• deterministic approaches:
- Perceptron ⇒ a linear classifier that finds a hyperplane to separate classes, adjusting weights based on

misclassified points. Similar to logistic regression but non-probabilistic
- k-Nearest Neighbors (kNN) ⇒ non-parametric method that classifies based on the majority class of the

nearest neighbors, leading to non-linear boundaries
- Support Vector Machines (SVM) ⇒ next lectures
- Random Forest ⇒ next lectures
- Convolutional Neural Networks (CNNs) ⇒ next lectures

10 / 37

2. Probabilistic classification

1. Introduction

2. Probabilistic classification
1. Logistic Regression
2. Softmax Regression

3. Non-probabilistic classification

11 / 37

2. Probabilistic classification

2.1. Logistic Regression

Logistic Regression

• Linear Regression (recap)
⇒ used to predict continuous values of Y given X
⇒ models the relationship between X and Y as a linear equation:

Y = β0 + β1X
⇒ best model parameters (β0, β1) are found by

minimizing Mean Squared Error (MSE)
X

Y

linear regression Y = 0 + 1X

• Logistic Regression

⇒ used to predict binary class values (discrete categorical values
y ∈ 0, 1) of a data point, given features (X, Y)

⇒ models a probability function using the logistic function:
p(y = 1|X) = 1

1+e−(β0+β1X)

⇒ best model parameters (β0, β1) are found by
maximizing Likelihood

X

Y

0.5

probability function P(class=1|X)=0.5
class 0
class 1 12 / 37

2. Probabilistic classification

2.1. Logistic Regression

Logistic Regression

• Linear Regression (recap)
⇒ used to predict continuous values of Y given X
⇒ models the relationship between X and Y as a linear equation:

Y = β0 + β1X
⇒ best model parameters (β0, β1) are found by

minimizing Mean Squared Error (MSE)
X

Y

linear regression Y = 0 + 1X

• Logistic Regression

⇒ used to predict binary class values (discrete categorical values
y ∈ 0, 1) of a data point, given features (X, Y)

⇒ models a probability function using the logistic function:
p(y = 1|X) = 1

1+e−(β0+β1X)

⇒ best model parameters (β0, β1) are found by
maximizing Likelihood

X

Y

0.5

probability function P(class=1|X)=0.5
class 0
class 1 13 / 37

2. Probabilistic classification

2.1. Logistic Regression

Logistic Regression

⇒ in order to model the binary class probabilities, we use the logistic function (a.k.a. sigmoid function,
S-shaped curve), which maps any real value of feature X to the range [0,1]:

σ(X) = 1
1 + e−(β0+β1X) = eβ0+β1X

1 + eβ0+β1X

0
x

0.0

0.5

1.0

sig
m

oi
d(

x)

(x) = 1
1 + e (0 + 1x)

effect of 0 (intercept)

0=0, 1=1
0=1, 1=1
0=-1, 1=1

0
x

0.0

0.5

1.0

sig
m

oi
d(

x)

(x) = 1
1 + e (0 + 1x)

effect of 1 (steepness)

0=0, 1=0.5
0=0, 1=1
0=0, 1=2

14 / 37

2. Probabilistic classification

2.1. Logistic Regression

Logistic Regression

⇒ in order to model the binary class probabilities, we use the logistic function (a.k.a. sigmoid function,
S-shaped curve), which maps any real value of feature X to the range [0,1]:

σ(X) = 1
1 + e−(β0+β1X) = eβ0+β1X

1 + eβ0+β1X = 1
1 + e−θ⊤X

with: θ = [β0, β1] and X = [1, X]

⇒ the probability p is then calculated as:

p(y = 1|X) = σ(X)
p(y = 0|X) = 1 − σ(X)

⇒ the prediction of the class ŷ ∈ {0, 1} is made by comparing the probability p(X) to a threshold (e.g. 0.5):

ŷ =
{

1 if p(X) ≥ 0.5
0 otherwise

15 / 37

2. Probabilistic classification

2.1. Logistic Regression

Logistic Regression

EX: estimate data point class ŷ ∈ {0|1} from estimated probabilities p(y |Y)

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
X (feature 1)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Y
(fe

at
ur

e
2)

0.5

feature space

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Y (feature 2)

0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y
p(

y|
Y)

if p > 0.5 y = 1

if p 0.5 y = 0

class 0
class 1

estimated probabilities and decision boundary

16 / 37

2. Probabilistic classification

2.1. Logistic Regression

Logistic Regression

EX: estimate data point class ŷ = {0|1} from estimated probabilities p(y |Y)

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
X (feature 1)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Y
(fe

at
ur

e
2)

0.15

0.30

0.45

0.60

0.75

0.90

0.5

feature space

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Y (feature 2)

0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y
p(

y|
Y)

p=0.15

p=0.3

p=0.75

p=0.9

class 0
class 1

estimated probabilities and decision boundary

17 / 37

2. Probabilistic classification

2.1. Logistic Regression

Logistic Regression

⇒ the coefficients β0 and β1 are unknown, and must be estimated based on the available training data

⇒ the coefficients are estimated by using the maximum likelihood function
→ find best estimates of β0 and β1, such that the predicted probability p̂(xi) for each data point returns as

closely as possible to the expected class
→ this can be formalized using a mathematical equation called a likelihood function:

L(β0, β1) =
∏

i :yi =1

p(xi)
∏

i :yi =0

(1 − p(xi))

→ the maximization of the likelihood function allows for the estimation of the best parameters β0 and β1:

β̂0, β̂1 = arg max
β0,β1

L(β0, β1)

NB: we could also use least squares to fit the model, but the maximum likelihood is preferred because it has better statistical properties

18 / 37

2. Probabilistic classification

2.1. Logistic Regression

Logistic Regression

⇒ the coefficients β0 and β1 are unknown, and must be estimated based on the available training data

⇒ the coefficients are estimated by using the maximum likelihood function
→ find best estimates of β0 and β1, such that the predicted probability p̂(xi) for each data point returns as

closely as possible to the expected class
→ this can be formalized using a mathematical equation called a likelihood function:

L(β0, β1) =
∏

i :yi =1

p(xi)
∏

i :yi =0

(1 − p(xi))

→ the maximization of the likelihood function allows for the estimation of the best parameters β0 and β1:

β̂0, β̂1 = arg max
β0,β1

L(β0, β1)

NB: we could also use least squares to fit the model, but the maximum likelihood is preferred because it has better statistical properties

19 / 37

2. Probabilistic classification

2.1. Logistic Regression

Logistic Regression

⇒ the coefficients β0 and β1 are unknown, and must be estimated based on the available training data

⇒ the coefficients are estimated by using the maximum likelihood function
→ find best estimates of β0 and β1, such that the predicted probability p̂(xi) for each data point returns as

closely as possible to the expected class
→ this can be formalized using a mathematical equation called a likelihood function:

L(β0, β1) =
∏

i :yi =1

p(xi)
∏

i :yi =0

(1 − p(xi))

→ the maximization of the likelihood function allows for the estimation of the best parameters β0 and β1:

β̂0, β̂1 = arg max
β0,β1

L(β0, β1)

NB: we could also use least squares to fit the model, but the maximum likelihood is preferred because it has better statistical properties

20 / 37

2. Probabilistic classification

2.1. Logistic Regression

Logistic Regression

⇒ the coefficients β0 and β1 are unknown, and must be estimated based on the available training data

⇒ the coefficients are estimated by using the maximum likelihood function
→ find best estimates of β0 and β1, such that the predicted probability p̂(xi) for each data point returns as

closely as possible to the expected class
→ this can be formalized using a mathematical equation called a likelihood function:

L(β0, β1) =
∏

i :yi =1

p(xi)
∏

i :yi =0

(1 − p(xi))

→ the maximization of the likelihood function allows for the estimation of the best parameters β0 and β1:

β̂0, β̂1 = arg max
β0,β1

L(β0, β1)

NB: we could also use least squares to fit the model, but the maximum likelihood is preferred because it has better statistical properties

21 / 37

2. Probabilistic classification

2.1. Logistic Regression

Logistic Regression

⇒ Logistic Regression can also be used to to predict a binary response but using multiple predictors
(in the previous slides, the binary class prediction was done using just the 1 feature Y)

⇒ if we consider k predictors, the model is then defined as:

p(X) = 1
1 + e−(β0+β1X1+···+βk Xk)

= eβ0+β1X1+···+βk Xk

1 + eβ0+β1X1+···+βk Xk

NB: the classification results obtained using one predictor or several may be quite different, especially when there is
correlation among the predictors!

⇒ nevertheless, Logistic Regression is limited as it can only model binary classification!
⇒ for multi-class classification, we need to use Softmax Regression

22 / 37

2. Probabilistic classification

2.1. Logistic Regression

Logistic Regression

⇒ Logistic Regression can also be used to to predict a binary response but using multiple predictors
(in the previous slides, the binary class prediction was done using just the 1 feature Y)

⇒ if we consider k predictors, the model is then defined as:

p(X) = 1
1 + e−(β0+β1X1+···+βk Xk)

= eβ0+β1X1+···+βk Xk

1 + eβ0+β1X1+···+βk Xk

NB: the classification results obtained using one predictor or several may be quite different, especially when there is
correlation among the predictors!

⇒ nevertheless, Logistic Regression is limited as it can only model binary classification!
⇒ for multi-class classification, we need to use Softmax Regression

23 / 37

2. Probabilistic classification

2.2. Softmax Regression

Softmax Regression

⇒ the Softmax Regression (a.k.a. Multinomial Logistic Regression) generalizes the logistic regression for
multiple classes, by calculating probabilities p(y) for each class y ∈ {1, ..., K}

p(y = k|X ; θ) =
exp(θ(k)⊤X)∑K
j=1 exp(θ(j)⊤X)

where

{
the numerator gives the exponentiated score for each class k
the denominator normalizes the scores into a valid probability distribution

In other words:
p(y = 1|X ; θ)
p(y = 2|X ; θ)

...
p(y = K |X ; θ)

 =
1∑K

j=1 exp(θ(j)⊤X)

exp(θ(1)⊤X)
exp(θ(2)⊤X)

...
exp(θ(K)⊤X)

 where θ(1), θ(2), . . . , θ(K) are the model parameters

⇒ like with the Logistic Regression classifier, the Softmax Regression classifier predicts the class with the
highest estimated probability:

ŷ = arg max
k

p(y = k|X ; θ)

24 / 37

2. Probabilistic classification

2.2. Softmax Regression

Softmax Regression

⇒ the Softmax Regression (a.k.a. Multinomial Logistic Regression) generalizes the logistic regression for
multiple classes, by calculating probabilities p(y) for each class y ∈ {1, ..., K}

p(y = k|X ; θ) =
exp(θ(k)⊤X)∑K
j=1 exp(θ(j)⊤X)

where

{
the numerator gives the exponentiated score for each class k
the denominator normalizes the scores into a valid probability distribution

In other words:
p(y = 1|X ; θ)
p(y = 2|X ; θ)

...
p(y = K |X ; θ)

 =
1∑K

j=1 exp(θ(j)⊤X)

exp(θ(1)⊤X)
exp(θ(2)⊤X)

...
exp(θ(K)⊤X)

 where θ(1), θ(2), . . . , θ(K) are the model parameters

⇒ like with the Logistic Regression classifier, the Softmax Regression classifier predicts the class with the
highest estimated probability:

ŷ = arg max
k

p(y = k|X ; θ)

25 / 37

2. Probabilistic classification

2.2. Softmax Regression

Softmax Regression

⇒ the Softmax Regression (a.k.a. Multinomial Logistic Regression) generalizes the logistic regression for
multiple classes, by calculating probabilities p(y) for each class y ∈ {1, ..., K}

p(y = k|X ; θ) =
exp(θ(k)⊤X)∑K
j=1 exp(θ(j)⊤X)

where

{
the numerator gives the exponentiated score for each class k
the denominator normalizes the scores into a valid probability distribution

In other words:
p(y = 1|X ; θ)
p(y = 2|X ; θ)

...
p(y = K |X ; θ)

 =
1∑K

j=1 exp(θ(j)⊤X)

exp(θ(1)⊤X)
exp(θ(2)⊤X)

...
exp(θ(K)⊤X)

 where θ(1), θ(2), . . . , θ(K) are the model parameters

⇒ like with the Logistic Regression classifier, the Softmax Regression classifier predicts the class with the
highest estimated probability:

ŷ = arg max
k

p(y = k|X ; θ)

26 / 37

2. Probabilistic classification

2.2. Softmax Regression

Softmax Regression

EX: estimate data point class ŷ ∈ {0, 1, 2}
multiclass classification

0 1 2 3 4 5 6 7
X (feature 1)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Y
(fe

at
ur

e
2)

class 0
class 1
class 2

⇒ Softmax Regression finds linear boundaries between multiple classes
→ it is commonly used as the final layer in neural networks for classification tasks

27 / 37

3. Non-probabilistic classification

1. Introduction

2. Probabilistic classification

3. Non-probabilistic classification
1. k-Nearest Neighbors (kNN)
2. other classifiers

28 / 37

3. Non-probabilistic classification

3.1. k-Nearest Neighbors (kNN)

kNN classification

⇒ Idea: classify a data point based on the majority class of its k Nearest Neighbors

⇒ Method:

1. take random data points in the training dataset

2. for a sample find the k (e.g. 5) closest data points in
the training dataset (k is a hyperparameter)

3. look at the neighbor labels, return/assign the mode

4. non-linear decision boundary can be recovered

class 0
class 1

29 / 37

3. Non-probabilistic classification

3.1. k-Nearest Neighbors (kNN)

kNN classification

⇒ Idea: classify a data point based on the majority class of its k Nearest Neighbors

⇒ Method:

1. take random data points in the training dataset

2. for a sample find the k (e.g. 5) closest data points in
the training dataset (k is a hyperparameter)

3. look at the neighbor labels, return/assign the mode

4. non-linear decision boundary can be recovered

class 0
class 1

30 / 37

3. Non-probabilistic classification

3.1. k-Nearest Neighbors (kNN)

kNN classification

⇒ Idea: classify a data point based on the majority class of its k Nearest Neighbors

⇒ Method:

1. take random data points in the training dataset

2. for a sample find the k (e.g. 5) closest data points in
the training dataset (k is a hyperparameter)

3. look at the neighbor labels, return/assign the mode

4. non-linear decision boundary can be recovered

class 0
class 1

31 / 37

3. Non-probabilistic classification

3.1. k-Nearest Neighbors (kNN)

kNN classification

⇒ Idea: classify a data point based on the majority class of its k Nearest Neighbors

⇒ Method:

1. take random data points in the training dataset

2. for a sample find the k (e.g. 5) closest data points in
the training dataset (k is a hyperparameter)

3. look at the neighbor labels, return/assign the mode

4. non-linear decision boundary can be recovered

class 0
class 1

32 / 37

3. Non-probabilistic classification

3.1. k-Nearest Neighbors (kNN)

kNN classification

⇒ Idea: classify a data point based on the majority class of its k Nearest Neighbors

⇒ Method:

1. take random data points in the training dataset

2. for a sample find the k (e.g. 5) closest data points in
the training dataset (k is a hyperparameter)

3. look at the neighbor labels, return/assign the mode

4. non-linear decision boundary can be recovered

class 0
class 1

33 / 37

3. Non-probabilistic classification

3.1. k-Nearest Neighbors (kNN)

kNN classification

EX: estimate classification boundary using the kNN algorithm

0 1 2 3 4 5 6 7
X (feature 1)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Y
(fe

at
ur

e
2)

k-NN classification (k=5, weights='distance')
class 2
class 0
class 1

KNN Decision Boundaries (k=5)
class 2
class 0
class 1

KNN Decision Boundaries (k=15)
class 2
class 0
class 1

KNN Decision Boundaries (k=25)
class 2
class 0
class 1

→ Pros: simple, easy to understand, works well with small datasets
→ Cons: slow for large datasets, sensitive to choice of distance metric and the value of k

34 / 37

3. Non-probabilistic classification

3.1. k-Nearest Neighbors (kNN)

kNN classification

EX: estimate classification boundary using the kNN algorithm

0 1 2 3 4 5 6 7
X (feature 1)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Y
(fe

at
ur

e
2)

k-NN classification (k=5, weights='distance')
class 2
class 0
class 1

KNN Decision Boundaries (k=5)
class 2
class 0
class 1

KNN Decision Boundaries (k=15)
class 2
class 0
class 1

KNN Decision Boundaries (k=25)
class 2
class 0
class 1

→ Pros: simple, easy to understand, works well with small datasets
→ Cons: slow for large datasets, sensitive to choice of distance metric and the value of k

35 / 37

3. Non-probabilistic classification

3.1. k-Nearest Neighbors (kNN)

kNN classification

EX: estimate classification boundary using the kNN algorithm

0 1 2 3 4 5 6 7
X (feature 1)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Y
(fe

at
ur

e
2)

k-NN classification (k=5, weights='distance')
class 2
class 0
class 1

KNN Decision Boundaries (k=5)
class 2
class 0
class 1

KNN Decision Boundaries (k=15)
class 2
class 0
class 1

KNN Decision Boundaries (k=25)
class 2
class 0
class 1

→ Pros: simple, easy to understand, works well with small datasets
→ Cons: slow for large datasets, sensitive to choice of distance metric and the value of k

36 / 37

3. Non-probabilistic classification

3.2. other classifiers

more on classification next week !

(perceptron, SVM, PCA)

37 / 37

	Introduction
	Probabilistic classification
	Logistic Regression
	Softmax Regression

	Non-probabilistic classification
	k-Nearest Neighbors (kNN)
	other classifiers

