Lecture 06 Features

2024-09-18

Sébastien Valade

2. Feature detection

H 1	and some of	
1.	Introd	luction

Consider two scenes taken from the same location, with slightly different angles and at different times:

Jannowitzbrücke, Berlin

 \rightarrow small changes in the real world scene lead to big changes in pixel space!

⇒ find **image locations** where we can reliably find correspondences amongst images (regardless of image illumination, camera position, etc.): **detect features**!

H 1	and some of	
1.	Introd	luction

Consider two scenes taken from the same location, with slightly different angles and at different times:

Jannowitzbrücke, Berlin

 \rightarrow small changes in the real world scene lead to big changes in pixel space!

 \Rightarrow find **image locations** where we can reliably find correspondences amongst images (regardless of image illumination, camera position, etc.): **<u>detect features</u>**!

Applications

- Image stitching: combine multiple images into a single image (i.e., panorama construction \rightarrow last lecture)
- Motion tracking: follow objects in a image/video sequence \rightarrow this lecture
- Structure from Motion: reconstruct 3D scene from images
- Object recognition: recognize objects in an image
- Image Retrieval: find similar images in a database
- etc.

Introduction

<u>Methods</u>: there are *many* methods and variations in feature description, and terminology can vary across the literature

From: S. Krig, "Computer vision metrics", Springer, 2016

Introduction

<u>Methods</u>: there are *many* methods and variations in feature description, and terminology can vary across the literature

From: S. Krig, "Computer vision metrics", Springer, 2016

* discussed in this lecture

2. Feature detection

- 1. image region uniqueness
- 2. quantify gradient orientation & magnitude
- 3. detect corners
- 4. detect more robust features

Which parts of the image are most descriptive? (i.e., what are the requirements for a good feature):

- Invariance to geometric and <u>radiometric</u> distortions (e.g., rotation, translation, scaling, illumination)
- Salient compared with surrounding (i.e. recognizable compared to the neighboring area)
- Rareness: good differentiation

Which parts of the image are most descriptive? (i.e., what are the requirements for a good feature):

- Invariance to geometric and <u>radiometric</u> distortions (e.g., rotation, translation, scaling, illumination)
- Salient compared with surrounding (i.e. recognizable compared to the neighboring area)
- Rareness: good differentiation

Intuition:

→ regions without edges: BAD nearly impossible to localize

Which parts of the image are most descriptive? (i.e., what are the requirements for a good feature):

- Invariance to geometric and <u>radiometric</u> distortions (e.g., rotation, translation, scaling, illumination)
- Salient compared with surrounding (i.e. recognizable compared to the neighboring area)
- Rareness: good differentiation

Intuition:

- → regions without edges: BAD nearly impossible to localize
- → regions with edges: BETTER only possible to align the patches along the normal to the edge direction

Which parts of the image are most descriptive? (i.e., what are the requirements for a good feature):

- Invariance to geometric and <u>radiometric</u> distortions (e.g., rotation, translation, scaling, illumination)
- Salient compared with surrounding (i.e. recognizable compared to the neighboring area)
- Rareness: good differentiation

Intuition:

- → regions without edges: BAD nearly impossible to localize
- → regions with edges: BETTER only possible to align the patches along the normal to the edge direction
- → regions <u>with corner</u>: GOOD patches with gradients in different orientations are the easiest to localize

How can we compute the uniqueness of image patches?

- \Rightarrow compute the <u>self-difference</u> of the image patch, a.k.a. <u>autocorrelation function</u>
- \Rightarrow (weighted) summed square difference (SSD) between the patch and itself:

$$E(u, v) = \sum_{x,y} w(x, y) \left[l(x + u, y + v) - l(x, y) \right]^{2}$$

where w(x, y) = weighting (or window) function (e.g. 1 in window, 0 outside)

$\textbf{flat} \Rightarrow \textbf{no} \ \textbf{stable} \ \textbf{minimum} \rightarrow \textbf{cannot} \ \textbf{be} \ \textbf{localized}$

 $\mathbf{edge} \Rightarrow \mathbf{strong} \text{ ambiguity along one direction}$

 $\textbf{corner} \Rightarrow \textbf{strong minimum} \rightarrow \textbf{can be localized}$

Computing *self-difference* for the whole image is very expensive ...

 \Rightarrow need an approximation of the self-difference: look at nearby patch gradients l_x and l_y

 \Rightarrow need an approximation of the self-difference: look at nearby patch gradients l_x and l_y

 \Rightarrow need an approximation of the self-difference: look at nearby patch gradients l_x and l_y

 \Rightarrow need an approximation of the self-difference: look at nearby patch gradients l_x and l_y

18 / 30

 \Rightarrow need an approximation of the self-difference: look at nearby patch gradients l_x and l_y

19 / 30

How can we quantify the orientation and magnitude of the gradients?

1. compute the <u>covariance matrix</u> of gradients (Ix, Iy), a.k.a. the <u>auto-correlation matrix</u>:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_y I_x & I_y^2 \end{bmatrix}$$

 \Rightarrow using a Taylor Series expansion of the image function I, the auto-correlation function E can be approximated as:

$$E(u, v) = \sum_{x, y} w(x, y) \left[l(x + u, y + v) - l(x, y) \right]^{2}$$
$$\simeq \begin{bmatrix} u & v \end{bmatrix} \mathcal{M} \begin{bmatrix} u \\ v \end{bmatrix}$$

How can we quantify the orientation and magnitude of the gradients?

1. compute the <u>covariance matrix</u> of gradients (Ix, Iy), a.k.a. the <u>auto-correlation matrix</u>:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_y I_x & I_y^2 \end{bmatrix}$$

 \Rightarrow using a Taylor Series expansion of the image function I, the auto-correlation function E can be approximated as:

$$E(u, v) = \sum_{x,y} w(x, y) \left[l(x + u, y + v) - l(x, y) \right]^{2}$$
$$\simeq \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

Math reminders

variance σ^2 = measure of the "spread" or "extent" of the data about some particular axis

- = average of the squared differences from the mean
- = square of standard deviation (σ)

$$var_x = \frac{\displaystyle\sum_{i=1}^N (x_i - \bar{x})^2}{N}$$
$$var_y = \frac{\displaystyle\sum_{i=1}^N (y_i - \bar{y})^2}{N}$$

covariance = measure the level to which two variables vary together

$$cov_{x,y} = rac{\sum_{i=1}^{N} (x_i - ar{x})(y_i - ar{y})}{N - 1}$$

covariance matrix = $\begin{bmatrix} var_x & cov_{x,y} \\ cov_{y,x} & var_y \end{bmatrix}$

2. Feature detection

2.2. quantify gradient orientation & magnitude

Math reminders

 $\textbf{Covariance matrix} = \begin{bmatrix} var_{x} & cov_{x,y} \\ cov_{y,x} & var_{y} \end{bmatrix}$

Eigenvalue analysis of covariance matrix \Rightarrow find directions with maximal variance

- eigenvectors (\vec{v}_1, \vec{v}_2) : represent the directions of the largest variance of the data
- eigenvalues (λ_1, λ_2) : represent the magnitude of this variance in those directions

Determinant and trace of covariance matrix

- determinant $det(covmat) = \lambda_1 \lambda_2$: measures the "spread" of the data captured by the covariance matrix
- trace $det(covmat) = \lambda_1 + \lambda_2$: measures the "total variance" captured by the covariance matrix

How can we quantify the orientation and magnitude of the gradients?

- 2. perform an **eigenvalue analysis** of the auto-correlation matrix M, which produces two **eigenvalues** (λ_1, λ_2) and two **eigenvector** directions (\vec{v}_1, \vec{v}_2)
 - \Rightarrow the values of the eigenvalues (λ_1 , λ_2) will determine the type of region:

2.3. detect corners

How can we detect corners?

 \Rightarrow use a threshold on the eigenvalues (or on a function of the eigenvalues)

 $\frac{\text{Threshold on the eigenvalues:}}{R = \min(\lambda_1, \lambda_2)}$ $\Rightarrow Shi - Tomasi \ corners$

2.3. detect corners

How can we detect corners?

 \Rightarrow use a threshold on the eigenvalues (or on a function of the eigenvalues)

λι

 λ_1

2.3. detect corners

Harris corners

Shi-Tomasi corners

As good as it gets?

 \Rightarrow no, corners are invariant to rotation, but <u>not invariant to scale</u>!

⇒ **<u>SIFT</u>** (Scale-Invariant Feature Transform)!

Lowe (2004), Distinctive Image Features from Scale-Invariant Keypoints, International Journal Of Computer Vision

As good as it gets?

 \Rightarrow no, corners are invariant to rotation, but <u>not invariant to scale</u>!

⇒ **<u>SIFT</u>** (Scale-Invariant Feature Transform)!

Lowe (2004), Distinctive Image Features from Scale-Invariant Keypoints, International Journal Of Computer Vision

<u>SIFT</u>

- keypoint detection based on gradients (similar to Harris)
- uses different scales of the image to achieve scale invariance
- uses gradient orientation normalization to achieve scale invariance

Lowe (2004), Distinctive Image Features from Scale-Invariant Keypoints