
UNAM - Posgrado en Ciencias de la Tierra - Semestre 2025-1

Lecture 06
Motion Estimation:

Digital Image Correlation & Optical Flow

2024-09-18

Sébastien Valade

1 / 63



1. Motion estimation

1. Motion estimation
1. introduction
2. cross-correlation methods
3. optical flow methods

2. Exercises

2 / 63



1. Motion estimation

1.1. introduction

GOAL:
⇒ estimate the 2D motion projected on the image plane by the objects moving in the 3D scene

APPLICATIONS in geoscience:
⇒ capture motion, with imagery from ground based cameras, UAV, satellites, etc.
⇒ few examples:

• lava flows
• ash plumes
• dome growth
• glacier motion
• landslides
• analogue modeling
• etc.

3 / 63



1. Motion estimation

1.1. introduction

GOAL:
⇒ estimate the 2D motion projected on the image plane by the objects moving in the 3D scene

APPLICATIONS in geoscience:
⇒ capture motion, with imagery from ground based cameras, UAV, satellites, etc.
⇒ few examples:

• lava flows
• ash plumes
• dome growth
• glacier motion
• landslides
• analogue modeling
• etc.

4 / 63



1. Motion estimation

1.1. introduction

Methods used to estimate image motion:

1. cross-correlation methods
⇒ determine a displacement vector by maximizing the correlation peak from two successive images

• Digital Image Correlation (DIC) 12

→ commonly used for measuring surface deformation
• Particle Image Velocimetry (PIV) 3

→ commonly used for flow visualization, typically fluid seeded with tracer particles (experimental fluid mechanics)
NB: PIV is very similar to DIC in principle and implementation algorithm

2. optical flow methods (OF)
⇒ originally developed by CV scientists to track objects motion (e.g., people and cars) in videos 4

• Sparse Optical Flow, e.g. Lucas-Kanade algorithm 5

• Dense Optical Flow, e.g. Farnebäck algorithm 6

1 Peters et al. (1983) Application of digital correlation methods to rigid body mechanics Opt. Eng. 22 738–42

2 Pan et al. (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review

3 Adrian (1991) Particle-imaging techniques for experimental fluid mechanics. Ann Rev Fluid Mech 23:261–304

4 Horn and Schunck (1981) Determining optical flow. Artif Intell 17:185–204

5 Lucas and Kanade (1981) An iterative image registration technique with an application to stereo vision. Proc. of Imaging Understanding

6 Farnebäck (2003) Two-frame motion estimation based on polynomial expansion, Proc. Scandinavian Conf. on Image Analysis

5 / 63

https://en.wikipedia.org/wiki/Digital_image_correlation_and_tracking
https://en.wikipedia.org/wiki/Particle_image_velocimetry
https://en.wikipedia.org/wiki/Optical_flow


1. Motion estimation

1.1. introduction

Methods used to estimate image motion:

1. cross-correlation methods
⇒ determine a displacement vector by maximizing the correlation peak from two successive images

• Digital Image Correlation (DIC) 12

→ commonly used for measuring surface deformation
• Particle Image Velocimetry (PIV) 3

→ commonly used for flow visualization, typically fluid seeded with tracer particles (experimental fluid mechanics)
NB: PIV is very similar to DIC in principle and implementation algorithm

2. optical flow methods (OF)
⇒ originally developed by CV scientists to track objects motion (e.g., people and cars) in videos 4

• Sparse Optical Flow, e.g. Lucas-Kanade algorithm 5

• Dense Optical Flow, e.g. Farnebäck algorithm 6

1 Peters et al. (1983) Application of digital correlation methods to rigid body mechanics Opt. Eng. 22 738–42

2 Pan et al. (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review

3 Adrian (1991) Particle-imaging techniques for experimental fluid mechanics. Ann Rev Fluid Mech 23:261–304

4 Horn and Schunck (1981) Determining optical flow. Artif Intell 17:185–204

5 Lucas and Kanade (1981) An iterative image registration technique with an application to stereo vision. Proc. of Imaging Understanding

6 Farnebäck (2003) Two-frame motion estimation based on polynomial expansion, Proc. Scandinavian Conf. on Image Analysis

6 / 63

https://en.wikipedia.org/wiki/Digital_image_correlation_and_tracking
https://en.wikipedia.org/wiki/Particle_image_velocimetry
https://en.wikipedia.org/wiki/Optical_flow


1. Motion estimation

1.1. introduction

Methods used to estimate image motion:

1. cross-correlation methods
⇒ determine a displacement vector by maximizing the correlation peak from two successive images

• Digital Image Correlation (DIC) 12

→ commonly used for measuring surface deformation
• Particle Image Velocimetry (PIV) 3

→ commonly used for flow visualization, typically fluid seeded with tracer particles (experimental fluid mechanics)
NB: PIV is very similar to DIC in principle and implementation algorithm

2. optical flow methods (OF)
⇒ originally developed by CV scientists to track objects motion (e.g., people and cars) in videos 4

• Sparse Optical Flow, e.g. Lucas-Kanade algorithm 5

• Dense Optical Flow, e.g. Farnebäck algorithm 6

1 Peters et al. (1983) Application of digital correlation methods to rigid body mechanics Opt. Eng. 22 738–42

2 Pan et al. (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review

3 Adrian (1991) Particle-imaging techniques for experimental fluid mechanics. Ann Rev Fluid Mech 23:261–304

4 Horn and Schunck (1981) Determining optical flow. Artif Intell 17:185–204

5 Lucas and Kanade (1981) An iterative image registration technique with an application to stereo vision. Proc. of Imaging Understanding

6 Farnebäck (2003) Two-frame motion estimation based on polynomial expansion, Proc. Scandinavian Conf. on Image Analysis

7 / 63

https://en.wikipedia.org/wiki/Digital_image_correlation_and_tracking
https://en.wikipedia.org/wiki/Particle_image_velocimetry
https://en.wikipedia.org/wiki/Optical_flow


1. Motion estimation

1.1. introduction

Methods used to estimate image motion:

1. cross-correlation methods
⇒ determine a displacement vector by maximizing the correlation peak from two successive images

• Digital Image Correlation (DIC) 12

→ commonly used for measuring surface deformation
• Particle Image Velocimetry (PIV) 3

→ commonly used for flow visualization, typically fluid seeded with tracer particles (experimental fluid mechanics)
NB: PIV is very similar to DIC in principle and implementation algorithm

2. optical flow methods (OF)
⇒ originally developed by CV scientists to track objects motion (e.g., people and cars) in videos 4

• Sparse Optical Flow, e.g. Lucas-Kanade algorithm 5

• Dense Optical Flow, e.g. Farnebäck algorithm 6

1 Peters et al. (1983) Application of digital correlation methods to rigid body mechanics Opt. Eng. 22 738–42

2 Pan et al. (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review

3 Adrian (1991) Particle-imaging techniques for experimental fluid mechanics. Ann Rev Fluid Mech 23:261–304

4 Horn and Schunck (1981) Determining optical flow. Artif Intell 17:185–204

5 Lucas and Kanade (1981) An iterative image registration technique with an application to stereo vision. Proc. of Imaging Understanding

6 Farnebäck (2003) Two-frame motion estimation based on polynomial expansion, Proc. Scandinavian Conf. on Image Analysis

8 / 63

https://en.wikipedia.org/wiki/Digital_image_correlation_and_tracking
https://en.wikipedia.org/wiki/Particle_image_velocimetry
https://en.wikipedia.org/wiki/Optical_flow


1. Motion estimation

1.2. cross-correlation methods

Cross-correlation method to estimate motion:
⇒ analyze the displacement within 2 images acquired at different time
⇒ analyze within discretized subsets (windows) of both images
⇒ evaluate similarity degree between both subsets using a cross-correlation (CC) criterion
⇒ the maximum correlation in each window corresponds to the displacement
NB: the correlation-map is twice as big as the window sizes because windows can shift by their maximum size both horizontally and vertically

9 / 63



1. Motion estimation

1.2. cross-correlation methods

Cross-correlation method to estimate motion:
⇒ analyze the displacement within 2 images acquired at different time
⇒ analyze within discretized subsets (windows) of both images
⇒ evaluate similarity degree between both subsets using a cross-correlation (CC) criterion
⇒ the maximum correlation in each window corresponds to the displacement
NB: the correlation-map is twice as big as the window sizes because windows can shift by their maximum size both horizontally and vertically

10 / 63



1. Motion estimation

1.2. cross-correlation methods

Cross-correlation method to estimate motion:
⇒ analyze the displacement within 2 images acquired at different time
⇒ analyze within discretized subsets (windows) of both images
⇒ evaluate similarity degree between both subsets using a cross-correlation (CC) criterion
⇒ the maximum correlation in each window corresponds to the displacement
NB: the correlation-map is twice as big as the window sizes because windows can shift by their maximum size both horizontally and vertically

11 / 63



1. Motion estimation

1.2. cross-correlation methods

Cross-correlation method to estimate motion:
⇒ analyze the displacement within 2 images acquired at different time
⇒ analyze within discretized subsets (windows) of both images
⇒ evaluate similarity degree between both subsets using a cross-correlation (CC) criterion
⇒ the maximum correlation in each window corresponds to the displacement
NB: the correlation-map is twice as big as the window sizes because windows can shift by their maximum size both horizontally and vertically

12 / 63



1. Motion estimation

1.2. cross-correlation methods

Cross-correlation method to estimate motion:
⇒ analyze the displacement within 2 images acquired at different time
⇒ analyze within discretized subsets (windows) of both images
⇒ evaluate similarity degree between both subsets using a cross-correlation (CC) criterion
⇒ the maximum correlation in each window corresponds to the displacement
NB: the correlation-map is twice as big as the window sizes because windows can shift by their maximum size both horizontally and vertically

13 / 63



1. Motion estimation

1.2. cross-correlation methods

Cross-correlation method to estimate motion:
⇒ analyze the displacement within 2 images acquired at different time
⇒ analyze within discretized subsets (windows) of both images
⇒ evaluate similarity degree between both subsets using a cross-correlation (CC) criterion
⇒ the maximum correlation in each window corresponds to the displacement
NB: the correlation-map is twice as big as the window sizes because windows can shift by their maximum size both horizontally and vertically

14 / 63



1. Motion estimation

1.2. cross-correlation methods

Cross-correlation method to estimate motion:
⇒ analyze the displacement within 2 images acquired at different time
⇒ analyze within discretized subsets (windows) of both images
⇒ evaluate similarity degree between both subsets using a cross-correlation (CC) criterion
⇒ the maximum correlation in each window corresponds to the displacement
NB: the correlation-map is twice as big as the window sizes because windows can shift by their maximum size both horizontally and vertically

15 / 63



1. Motion estimation

1.2. cross-correlation methods

Cross-correlation method to estimate motion:
⇒ loop over the entire image to recover the displacements

NB: the above animation will only run with PDF readers having built-in JavaScript engine (ex: Adobe Reader, recent versions of Okular, etc.)

16 / 63



1. Motion estimation

1.2. cross-correlation methods

NB 1: several correlation criterion can be used to evaluate the similarity degree
NB 2: post-processing of displacement vectors allow to recover e.g. strain maps (local derivative calculation)

from Pan et al. 2009

Colima volcano dome growth and coulée spreading (Walter et al. 2013)
(compression=green / extension=red)

17 / 63



1. Motion estimation

1.2. cross-correlation methods

NB 1: several correlation criterion can be used to evaluate the similarity degree
NB 2: post-processing of displacement vectors allow to recover e.g. strain maps (local derivative calculation)

from Pan et al. 2009

Colima volcano dome growth and coulée spreading (Walter et al. 2013)
(compression=green / extension=red)

18 / 63



1. Motion estimation

1.3. optical flow methods

Optical-flow method to estimate motion:

⇒ the most general version of motion estimation is to compute an independent estimate of motion at each
pixel → generally known as optical flow (Szeliski 2010)1

⇒ in contrast to the correlation method that is essentially an integral approach, the optical flow method is a
differential approach (hence better suited for images with continuous patterns) (Liu et al. 2015)2

⇒ Horn and Schunck (1981) gave the first optical flow equation (a.k.a. the brightness constraint equation)

⇒ the most famous algorithms developed to solve the optical flow equation are:
• Lucas and Kanade (1981): sparse optical flow (Lucas-Kanade, 1981)

⇒ displacement vectors computed for “best-suited” image regions: corners & edges (good features!)
• Farnebäck, 2003 : dense optical flow

⇒ displacement vectors computed for every pixel in the image

1 Szeliski (2010) Computer Vision: Algorithms and Applications, Springer editions

2 Liu et al. (2015) Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images, Exp. Fluids

19 / 63



1. Motion estimation

1.3. optical flow methods

Optical-flow method to estimate motion:

⇒ the most general version of motion estimation is to compute an independent estimate of motion at each
pixel → generally known as optical flow (Szeliski 2010)1

⇒ in contrast to the correlation method that is essentially an integral approach, the optical flow method is a
differential approach (hence better suited for images with continuous patterns) (Liu et al. 2015)2

⇒ Horn and Schunck (1981) gave the first optical flow equation (a.k.a. the brightness constraint equation)

⇒ the most famous algorithms developed to solve the optical flow equation are:
• Lucas and Kanade (1981): sparse optical flow (Lucas-Kanade, 1981)

⇒ displacement vectors computed for “best-suited” image regions: corners & edges (good features!)
• Farnebäck, 2003 : dense optical flow

⇒ displacement vectors computed for every pixel in the image

1 Szeliski (2010) Computer Vision: Algorithms and Applications, Springer editions

2 Liu et al. (2015) Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images, Exp. Fluids

20 / 63



1. Motion estimation

1.3. optical flow methods

Optical-flow method to estimate motion:

⇒ the most general version of motion estimation is to compute an independent estimate of motion at each
pixel → generally known as optical flow (Szeliski 2010)1

⇒ in contrast to the correlation method that is essentially an integral approach, the optical flow method is a
differential approach (hence better suited for images with continuous patterns) (Liu et al. 2015)2

⇒ Horn and Schunck (1981) gave the first optical flow equation (a.k.a. the brightness constraint equation)

⇒ the most famous algorithms developed to solve the optical flow equation are:
• Lucas and Kanade (1981): sparse optical flow (Lucas-Kanade, 1981)

⇒ displacement vectors computed for “best-suited” image regions: corners & edges (good features!)
• Farnebäck, 2003 : dense optical flow

⇒ displacement vectors computed for every pixel in the image

1 Szeliski (2010) Computer Vision: Algorithms and Applications, Springer editions

2 Liu et al. (2015) Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images, Exp. Fluids

21 / 63



1. Motion estimation

1.3. optical flow methods

Optical-flow method to estimate motion:

⇒ the most general version of motion estimation is to compute an independent estimate of motion at each
pixel → generally known as optical flow (Szeliski 2010)1

⇒ in contrast to the correlation method that is essentially an integral approach, the optical flow method is a
differential approach (hence better suited for images with continuous patterns) (Liu et al. 2015)2

⇒ Horn and Schunck (1981) gave the first optical flow equation (a.k.a. the brightness constraint equation)

⇒ the most famous algorithms developed to solve the optical flow equation are:
• Lucas and Kanade (1981): sparse optical flow (Lucas-Kanade, 1981)

⇒ displacement vectors computed for “best-suited” image regions: corners & edges (good features!)
• Farnebäck, 2003 : dense optical flow

⇒ displacement vectors computed for every pixel in the image

1 Szeliski (2010) Computer Vision: Algorithms and Applications, Springer editions

2 Liu et al. (2015) Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images, Exp. Fluids

22 / 63



1. Motion estimation

1.3. optical flow methods

How is the optical flow equation obtained ? (Horn & Schunck, 1981)

1. Define the optical flow problem
⇒ optical flow = motion of objects between consecutive frames
⇒ how can we recover displacements dx and dy?

2. Brightness constancy assumption
⇒ assume that pixel intensities are constant between consecutive frames
NB: this assumption is valid for small time difference between frames (dt), and for pixels in a small region (small dx, dy)

I(x , y , t) = I(x + dx , y + dy , t + dt) (1)

23 / 63



1. Motion estimation

1.3. optical flow methods

How is the optical flow equation obtained ? (Horn & Schunck, 1981)

1. Define the optical flow problem
⇒ optical flow = motion of objects between consecutive frames
⇒ how can we recover displacements dx and dy?

2. Brightness constancy assumption
⇒ assume that pixel intensities are constant between consecutive frames
NB: this assumption is valid for small time difference between frames (dt), and for pixels in a small region (small dx, dy)

I(x , y , t) = I(x + dx , y + dy , t + dt) (1)

24 / 63



1. Motion estimation

1.3. optical flow methods

2. Taylor Series Approximation of the right-hand side
⇒ approximate the right-hand side of equation (1) with the 1st order Taylor series

Reminder
⇒ the Taylor series is an extremely powerful tool for approximating functions as polynomials
⇒ the Taylor series of a function f (x) is an infinite sum of terms that are expressed in terms of the function’s derivatives at a single point (wikipedia)

f (x) = f (a) +
f ′(a)

1!
(x − a) +

f ′′(a)
2!

(x − a)2 + · · · +
f n(a)

n!
(x − a)n

25 / 63

https://en.wikipedia.org/wiki/Taylor_series


1. Motion estimation

1.3. optical flow methods

2. Taylor Series Approximation of the right-hand side
⇒ approximate the right-hand side of equation (1) with the 1st order Taylor series

Reminder
⇒ the Taylor series is an extremely powerful tool for approximating functions as polynomials
⇒ the Taylor series of a function f (x) is an infinite sum of terms that are expressed in terms of the function’s derivatives at a single point (wikipedia)

f (x) = f (a) +
f ′(a)

1!
(x − a) +

f ′′(a)
2!

(x − a)2 + · · · +
f n(a)

n!
(x − a)n

26 / 63

https://en.wikipedia.org/wiki/Taylor_series


1. Motion estimation

1.3. optical flow methods

2. Taylor Series Approximation of the right-hand side
⇒ approximate the right-hand side of equation (1) with the 1st order Taylor series

Reminder
⇒ the Taylor series is an extremely powerful tool for approximating functions as polynomials
⇒ the Taylor series of a function f (x) is an infinite sum of terms that are expressed in terms of the function’s derivatives at a single point (wikipedia)

f (x) = f (a) +
f ′(a)

1!
(x − a) +

f ′′(a)
2!

(x − a)2 + · · · +
f n(a)

n!
(x − a)n

27 / 63

https://en.wikipedia.org/wiki/Taylor_series


1. Motion estimation

1.3. optical flow methods

2. Taylor Series Approximation of the right-hand side
⇒ approximate the right-hand side of equation (1) with the 1st order Taylor series

Reminder
⇒ the Taylor series is an extremely powerful tool for approximating functions as polynomials
⇒ the Taylor series of a function f (x) is an infinite sum of terms that are expressed in terms of the function’s derivatives at a single point (wikipedia)

f (x) = f (a) +
f ′(a)

1!
(x − a) +

f ′′(a)
2!

(x − a)2 + · · · +
f n(a)

n!
(x − a)n

28 / 63

https://en.wikipedia.org/wiki/Taylor_series


1. Motion estimation

1.3. optical flow methods

2. Taylor Series Approximation of the right-hand side
⇒ approximate the right-hand side of equation (1) with the 1st order Taylor series

Reminder
⇒ the Taylor series is an extremely powerful tool for approximating functions as polynomials
⇒ the Taylor series of a function f (x) is an infinite sum of terms that are expressed in terms of the function’s derivatives at a single point (wikipedia)

f (x) = f (a) +
f ′(a)

1!
(x − a) +

f ′′(a)
2!

(x − a)2 + · · · +
f n(a)

n!
(x − a)n

29 / 63

https://en.wikipedia.org/wiki/Taylor_series


1. Motion estimation

1.3. optical flow methods

2. Taylor Series Approximation of the right-hand side
⇒ approximate the right-hand side of equation (1) with the 1st order Taylor series

Reminder
⇒ the Taylor series is an extremely powerful tool for approximating functions as polynomials
⇒ the Taylor series of a function f (x) is an infinite sum of terms that are expressed in terms of the function’s derivatives at a single point (wikipedia)

f (x) = f (a) +
f ′(a)

1!
(x − a) +

f ′′(a)
2!

(x − a)2 + · · · +
f n(a)

n!
(x − a)n

30 / 63

https://en.wikipedia.org/wiki/Taylor_series


1. Motion estimation

1.3. optical flow methods

2. Taylor Series Approximation of the right-hand side
⇒ approximate the right-hand side of equation (1) with the 1st order Taylor series

Reminder
⇒ the Taylor series is an extremely powerful tool for approximating functions as polynomials
⇒ the Taylor series of a function f (x) is an infinite sum of terms that are expressed in terms of the function’s derivatives at a single point (wikipedia)

f (x) = f (a) +
f ′(a)

1!
(x − a) +

f ′′(a)
2!

(x − a)2 + · · · +
f n(a)

n!
(x − a)n

31 / 63

https://en.wikipedia.org/wiki/Taylor_series


1. Motion estimation

1.3. optical flow methods

2. Taylor Series Approximation of the right-hand side
⇒ approximate the right-hand side of equation (1) with the 1st order Taylor series

Reminder (continued)
⇒ the Taylor series is an extremely powerful tool for approximating functions as polynomials
⇒ the Taylor series of a function f (x) is an infinite sum of terms that are expressed in terms of the function’s derivatives at a single point (wikipedia)

f (x) = f (a) +
f ′(a)

1!
(x − a) +

f ′′(a)
2!

(x − a)2 + · · · +
f n(a)

n!
(x − a)n

⇒ EX: 1st order Taylor approximation of an image profile I(x), centered around x=0 (a=0):

I(x) ≈ I(a) + I′(a)(x − a)

≈ I(a) +
d
dx

I(a)(x − a)

≈ I(0) +
d
dx

I(0)x

≈ b + ax

32 / 63

https://en.wikipedia.org/wiki/Taylor_series


1. Motion estimation

1.3. optical flow methods

2. Taylor Series Approximation of the right-hand side
⇒ approximate the right-hand side of equation (1) with the 1st order Taylor series

I(x , y , t) = I(x + dx , y + dy , t + dt) (1)

Recall 1st order Taylor general approximation:
f (x) ≈ f (a) + f ′(a)(x − a)

The right-hand side can therefore be approximated as:

I(x + dx , y + dy , t + dt) ≈ I(x , y , t) + ∂I
∂x (x + dx − x) + ∂I

∂y (y + dy − y) + ∂I
∂t (t + dt − t)

≈ I(x , y , t) + ∂I
∂x dx + ∂I

∂y dy + ∂I
∂t dt

Replacing the approximation inside equation (1), and canceling out the I(x , y , t) term on both sides gives:
∂I
∂x dx + ∂I

∂y dy + ∂I
∂t dt = 0 (2)

33 / 63



1. Motion estimation

1.3. optical flow methods

2. Taylor Series Approximation of the right-hand side
⇒ approximate the right-hand side of equation (1) with the 1st order Taylor series

I(x , y , t) = I(x + dx , y + dy , t + dt) (1)

Recall 1st order Taylor general approximation:
f (x) ≈ f (a) + f ′(a)(x − a)

The right-hand side can therefore be approximated as:

I(x + dx , y + dy , t + dt) ≈ I(x , y , t) + ∂I
∂x (x + dx − x) + ∂I

∂y (y + dy − y) + ∂I
∂t (t + dt − t)

≈ I(x , y , t) + ∂I
∂x dx + ∂I

∂y dy + ∂I
∂t dt

Replacing the approximation inside equation (1), and canceling out the I(x , y , t) term on both sides gives:
∂I
∂x dx + ∂I

∂y dy + ∂I
∂t dt = 0 (2)

34 / 63



1. Motion estimation

1.3. optical flow methods

2. Taylor Series Approximation of the right-hand side
⇒ approximate the right-hand side of equation (1) with the 1st order Taylor series

I(x , y , t) = I(x + dx , y + dy , t + dt) (1)

Recall 1st order Taylor general approximation:
f (x) ≈ f (a) + f ′(a)(x − a)

The right-hand side can therefore be approximated as:

I(x + dx , y + dy , t + dt) ≈ I(x , y , t) + ∂I
∂x (x + dx − x) + ∂I

∂y (y + dy − y) + ∂I
∂t (t + dt − t)

≈ I(x , y , t) + ∂I
∂x dx + ∂I

∂y dy + ∂I
∂t dt

Replacing the approximation inside equation (1), and canceling out the I(x , y , t) term on both sides gives:
∂I
∂x dx + ∂I

∂y dy + ∂I
∂t dt = 0 (2)

35 / 63



1. Motion estimation

1.3. optical flow methods

2. Taylor Series Approximation of the right-hand side
⇒ approximate the right-hand side of equation (1) with the 1st order Taylor series

I(x , y , t) = I(x + dx , y + dy , t + dt) (1)

Recall 1st order Taylor general approximation:
f (x) ≈ f (a) + f ′(a)(x − a)

The right-hand side can therefore be approximated as:

I(x + dx , y + dy , t + dt) ≈ I(x , y , t) + ∂I
∂x (x + dx − x) + ∂I

∂y (y + dy − y) + ∂I
∂t (t + dt − t)

≈ I(x , y , t) + ∂I
∂x dx + ∂I

∂y dy + ∂I
∂t dt

Replacing the approximation inside equation (1), and canceling out the I(x , y , t) term on both sides gives:
∂I
∂x dx + ∂I

∂y dy + ∂I
∂t dt = 0 (2)

36 / 63



1. Motion estimation

1.3. optical flow methods

2. Taylor Series Approximation of the right-hand side (continued)

⇒ dividing equation (2) by dt gives:

∂I
∂x

dx
dt + ∂I

∂y
dy
dt + ∂I

∂t �
��dt

dt = 0

where:
• dx

dt = u and dy
dt = v are the displacement vectors

• ∂I
∂x , ∂I

∂y , and ∂I
∂t are the image gradients along the horizontal axis, the vertical axis, and time

⇒ the optical flow equation is therefore defined as :

∂I
∂x u + ∂I

∂y v + ∂I
∂t = 0 (3)

1 equation, 2 unknowns (u, v) ⇒ underdetermined

37 / 63



1. Motion estimation

1.3. optical flow methods

2. Taylor Series Approximation of the right-hand side (continued)

⇒ dividing equation (2) by dt gives:

∂I
∂x

dx
dt + ∂I

∂y
dy
dt + ∂I

∂t �
��dt

dt = 0

where:
• dx

dt = u and dy
dt = v are the displacement vectors

• ∂I
∂x , ∂I

∂y , and ∂I
∂t are the image gradients along the horizontal axis, the vertical axis, and time

⇒ the optical flow equation is therefore defined as :

∂I
∂x u + ∂I

∂y v + ∂I
∂t = 0 (3)

1 equation, 2 unknowns (u, v) ⇒ underdetermined

38 / 63



1. Motion estimation

1.3. optical flow methods

2. Taylor Series Approximation of the right-hand side (continued)

⇒ dividing equation (2) by dt gives:

∂I
∂x

dx
dt + ∂I

∂y
dy
dt + ∂I

∂t �
��dt

dt = 0

where:
• dx

dt = u and dy
dt = v are the displacement vectors

• ∂I
∂x , ∂I

∂y , and ∂I
∂t are the image gradients along the horizontal axis, the vertical axis, and time

⇒ the optical flow equation is therefore defined as :

∂I
∂x u + ∂I

∂y v + ∂I
∂t = 0 (3)

1 equation, 2 unknowns (u, v) ⇒ underdetermined

39 / 63



1. Motion estimation

1.3. optical flow methods

2. Taylor Series Approximation of the right-hand side (continued)

⇒ dividing equation (2) by dt gives:

∂I
∂x

dx
dt + ∂I

∂y
dy
dt + ∂I

∂t �
��dt

dt = 0

where:
• dx

dt = u and dy
dt = v are the displacement vectors

• ∂I
∂x , ∂I

∂y , and ∂I
∂t are the image gradients along the horizontal axis, the vertical axis, and time

⇒ the optical flow equation is therefore defined as :

∂I
∂x u + ∂I

∂y v + ∂I
∂t = 0 (3)

1 equation, 2 unknowns (u, v) ⇒ underdetermined

40 / 63



1. Motion estimation

1.3. optical flow methods

2. Taylor Series Approximation of the right-hand side (continued)

⇒ dividing equation (2) by dt gives:

∂I
∂x

dx
dt + ∂I

∂y
dy
dt + ∂I

∂t �
��dt

dt = 0

where:
• dx

dt = u and dy
dt = v are the displacement vectors

• ∂I
∂x , ∂I

∂y , and ∂I
∂t are the image gradients along the horizontal axis, the vertical axis, and time

⇒ the optical flow equation is therefore defined as :

∂I
∂x u + ∂I

∂y v + ∂I
∂t = 0 (3)

1 equation, 2 unknowns (u, v) ⇒ underdetermined

41 / 63



1. Motion estimation

1.3. optical flow methods

How is the optical flow equation solved ?
⇒ most famous approach is the Lucas & Kanade, 1981 method

→ the method assumes that pixels in a small neighbood have similar motion, hence a 3x3 window around the
central pixel gives 9 optical flow equations

To simplify the reading, let’s rename the variables in the optical flow equation:

∂I
∂x

= dIx (=image horizontal gradient, compute with convolution kernel!)

∂I
∂y

= dIy (=image vertical gradient, compute with convolution kernel!)

∂I
∂t

= dIt = It [x, y ] − It+dt [x, y ]

→ the 9 optical flow equations can therefore be expressed as a system of equations:
dIx1 u + dIy1 v = −dIt1

...
... =

...
dIx9 u + dIy9 v = −dIt9

42 / 63



1. Motion estimation

1.3. optical flow methods

How is the optical flow equation solved ?
⇒ most famous approach is the Lucas & Kanade, 1981 method

→ the method assumes that pixels in a small neighbood have similar motion, hence a 3x3 window around the
central pixel gives 9 optical flow equations

To simplify the reading, let’s rename the variables in the optical flow equation:

∂I
∂x

= dIx (=image horizontal gradient, compute with convolution kernel!)

∂I
∂y

= dIy (=image vertical gradient, compute with convolution kernel!)

∂I
∂t

= dIt = It [x, y ] − It+dt [x, y ]

→ the 9 optical flow equations can therefore be expressed as a system of equations:
dIx1 u + dIy1 v = −dIt1

...
... =

...
dIx9 u + dIy9 v = −dIt9

43 / 63



1. Motion estimation

1.3. optical flow methods

How is the optical flow equation solved ?
⇒ most famous approach is the Lucas & Kanade, 1981 method

→ the method assumes that pixels in a small neighbood have similar motion, hence a 3x3 window around the
central pixel gives 9 optical flow equations

To simplify the reading, let’s rename the variables in the optical flow equation:

∂I
∂x

= dIx (=image horizontal gradient, compute with convolution kernel!)

∂I
∂y

= dIy (=image vertical gradient, compute with convolution kernel!)

∂I
∂t

= dIt = It [x, y ] − It+dt [x, y ]

→ the 9 optical flow equations can therefore be expressed as a system of equations:
dIx1 u + dIy1 v = −dIt1

...
... =

...
dIx9 u + dIy9 v = −dIt9

44 / 63



1. Motion estimation

1.3. optical flow methods

How is the optical flow equation solved ?
⇒ most famous approach is the Lucas & Kanade, 1981 method

→ the method assumes that pixels in a small neighbood have similar motion, hence a 3x3 window around the
central pixel gives 9 optical flow equations

To simplify the reading, let’s rename the variables in the optical flow equation:

∂I
∂x

= dIx (=image horizontal gradient, compute with convolution kernel!)

∂I
∂y

= dIy (=image vertical gradient, compute with convolution kernel!)

∂I
∂t

= dIt = It [x, y ] − It+dt [x, y ]

→ the 9 optical flow equations can therefore be expressed as a system of equations:
dIx1 u + dIy1 v = −dIt1

...
... =

...
dIx9 u + dIy9 v = −dIt9

45 / 63



1. Motion estimation

1.3. optical flow methods

How is the optical flow equation solved ?
⇒ most famous approach is the Lucas & Kanade, 1981 method

→ the method assumes that pixels in a small neighbood have similar motion, hence a 3x3 window around the
central pixel gives 9 optical flow equations

To simplify the reading, let’s rename the variables in the optical flow equation:

∂I
∂x

= dIx (=image horizontal gradient, compute with convolution kernel!)

∂I
∂y

= dIy (=image vertical gradient, compute with convolution kernel!)

∂I
∂t

= dIt = It [x, y ] − It+dt [x, y ]

→ the 9 optical flow equations can therefore be expressed as a system of equations:
dIx1 u + dIy1 v = −dIt1

...
... =

...
dIx9 u + dIy9 v = −dIt9

46 / 63



1. Motion estimation

1.3. optical flow methods

Lucas & Kanade method (continued)

→ the system of equations can be written in matrix form:

Aν = b (4)

with: A =

[dIx1 dIy1
...

...
dIx9 dIy9

]
, ν =

[
u
v

]
, and b =

[
−dIt1

...
−dIt9

]
⇒ the Lucas-Kanade algorithm solves for ν = [u, v ] by minimizing the sum-squared error of the optical flow
equations for each pixel in the chosen window (least square fit)

NB: A is not square, hence not directly invertible ⇒ the trick is to multiply A by its transform AT to make it square
(hence invertible):

Aν = b

AT Aν = AT b

(AT A)−1(AT A)ν = (AT A)−1AT b

ν = (AT A)−1AT b

47 / 63



1. Motion estimation

1.3. optical flow methods

Lucas & Kanade method (continued)

→ the system of equations can be written in matrix form:

Aν = b (4)

with: A =

[dIx1 dIy1
...

...
dIx9 dIy9

]
, ν =

[
u
v

]
, and b =

[
−dIt1

...
−dIt9

]
⇒ the Lucas-Kanade algorithm solves for ν = [u, v ] by minimizing the sum-squared error of the optical flow
equations for each pixel in the chosen window (least square fit)

NB: A is not square, hence not directly invertible ⇒ the trick is to multiply A by its transform AT to make it square
(hence invertible):

Aν = b

AT Aν = AT b

(AT A)−1(AT A)ν = (AT A)−1AT b

ν = (AT A)−1AT b

48 / 63



1. Motion estimation

1.3. optical flow methods

Lucas & Kanade method (continued)

→ the system of equations can be written in matrix form:

Aν = b (4)

with: A =

[dIx1 dIy1
...

...
dIx9 dIy9

]
, ν =

[
u
v

]
, and b =

[
−dIt1

...
−dIt9

]
⇒ the Lucas-Kanade algorithm solves for ν = [u, v ] by minimizing the sum-squared error of the optical flow
equations for each pixel in the chosen window (least square fit)

NB: A is not square, hence not directly invertible ⇒ the trick is to multiply A by its transform AT to make it square
(hence invertible):

Aν = b

AT Aν = AT b

(AT A)−1(AT A)ν = (AT A)−1AT b

ν = (AT A)−1AT b

49 / 63



1. Motion estimation

1.3. optical flow methods

Lucas & Kanade method (continued)

→ the system of equations can be written in matrix form:

Aν = b (4)

with: A =

[dIx1 dIy1
...

...
dIx9 dIy9

]
, ν =

[
u
v

]
, and b =

[
−dIt1

...
−dIt9

]
⇒ the Lucas-Kanade algorithm solves for ν = [u, v ] by minimizing the sum-squared error of the optical flow
equations for each pixel in the chosen window (least square fit)

NB: A is not square, hence not directly invertible ⇒ the trick is to multiply A by its transform AT to make it square
(hence invertible):

Aν = b

AT Aν = AT b

(AT A)−1(AT A)ν = (AT A)−1AT b

ν = (AT A)−1AT b

50 / 63



1. Motion estimation

1.3. Farneoptical flow methods

Lucas & Kanade method (continued)

Beware, AT A only invertible where eigenvalues λ1 and λ2 > 0:
• if λ1 = λ2 = 0: occurs where image has no gradient (flat region) → no unique solution can be found
• if λ1 = 0 and λ2 ̸= 0 (or vice-versa): occurs where image has gradient in only 1 direction (edge) → flow cannot be determined uniquely
• if λ1 > 0 and λ2 > 0: occurs where image has “texture” → flow can be determined uniquely

⇒ compute only for good features points, i.e. corners ! (e.g. Harris corners, Shi-Tomasi corners, ...)

bad!not so goodgood!

51 / 63



1. Motion estimation

1.3. Farneoptical flow methods

Lucas & Kanade method (continued)

Beware, AT A only invertible where eigenvalues λ1 and λ2 > 0:
• if λ1 = λ2 = 0: occurs where image has no gradient (flat region) → no unique solution can be found
• if λ1 = 0 and λ2 ̸= 0 (or vice-versa): occurs where image has gradient in only 1 direction (edge) → flow cannot be determined uniquely
• if λ1 > 0 and λ2 > 0: occurs where image has “texture” → flow can be determined uniquely

⇒ compute only for good features points, i.e. corners ! (e.g. Harris corners, Shi-Tomasi corners, ...)

bad!not so goodgood!

52 / 63



1. Motion estimation

1.3. Farneoptical flow methods

Lucas & Kanade method (continued)

Beware, AT A only invertible where eigenvalues λ1 and λ2 > 0:
• if λ1 = λ2 = 0: occurs where image has no gradient (flat region) → no unique solution can be found
• if λ1 = 0 and λ2 ̸= 0 (or vice-versa): occurs where image has gradient in only 1 direction (edge) → flow cannot be determined uniquely
• if λ1 > 0 and λ2 > 0: occurs where image has “texture” → flow can be determined uniquely

⇒ compute only for good features points, i.e. corners ! (e.g. Harris corners, Shi-Tomasi corners, ...)

bad!

not so goodgood!

53 / 63



1. Motion estimation

1.3. Farneoptical flow methods

Lucas & Kanade method (continued)

Beware, AT A only invertible where eigenvalues λ1 and λ2 > 0:
• if λ1 = λ2 = 0: occurs where image has no gradient (flat region) → no unique solution can be found
• if λ1 = 0 and λ2 ̸= 0 (or vice-versa): occurs where image has gradient in only 1 direction (edge) → flow cannot be determined uniquely
• if λ1 > 0 and λ2 > 0: occurs where image has “texture” → flow can be determined uniquely

⇒ compute only for good features points, i.e. corners ! (e.g. Harris corners, Shi-Tomasi corners, ...)

bad!

not so good

good!

54 / 63



1. Motion estimation

1.3. Farneoptical flow methods

Lucas & Kanade method (continued)

Beware, AT A only invertible where eigenvalues λ1 and λ2 > 0:
• if λ1 = λ2 = 0: occurs where image has no gradient (flat region) → no unique solution can be found
• if λ1 = 0 and λ2 ̸= 0 (or vice-versa): occurs where image has gradient in only 1 direction (edge) → flow cannot be determined uniquely
• if λ1 > 0 and λ2 > 0: occurs where image has “texture” → flow can be determined uniquely

⇒ compute only for good features points, i.e. corners ! (e.g. Harris corners, Shi-Tomasi corners, ...)

bad!not so good

good!
55 / 63



1. Motion estimation

1.3. optical flow methods

Demonstration:
1. Sparse Optical Flow (Lucas-Kanade algorithm)

⇒ computes flow only for specific features (ex: Shi-Tomasi corners), i.e. sparse

56 / 63



1. Motion estimation

1.3. optical flow methods

Demonstration:
1. Sparse Optical Flow (Lucas-Kanade algorithm)

⇒ computes flow only for specific features (ex: Shi-Tomasi corners), i.e. sparse

57 / 63



1. Motion estimation

1.3. optical flow methods

Demonstration:
2. Dense Optical Flow (Farnebäck algorithm)

⇒ computes flow for all pixels (or every n pixels), i.e. dense
⇒ approximation uses a second-order Taylor Expansion

58 / 63



2. Exercises

1. Motion estimation

2. Exercises
1. install OpenCV
2. exercises

59 / 63



2. Exercises

2.1. install OpenCV

OpenCV (Open Source Computer Vision Library):
⇒ library of programming functions mainly aimed at real-time computer vision
⇒ written in C++ (primary interface), APIs in Python, Java, and Matlab

Installing OpenCV with Anaconda (conda-forge packages):
$ conda install -c conda-forge opencv

Nota Bene
If the above command hangs or fails with error message ‘‘Solving environment: failed with initial frozen solve. Retrying with flexible
solve’’, it is likely that there is dependency clash in the default conda environment.

⇒ Solution 1 (quick & dirty): update all packages and retry
$ conda update --all
$ conda install -c conda-forge opencv

⇒ Solution 2 (clean): create a separate environment where OpenCV is to be installed
$ conda create --name <name>
$ activate <name>
$ conda install -c conda-forge opencv

60 / 63

https://opencv.org/
https://anaconda.org/conda-forge/opencv


2. Exercises

2.1. install OpenCV

OpenCV (Open Source Computer Vision Library):
⇒ library of programming functions mainly aimed at real-time computer vision
⇒ written in C++ (primary interface), APIs in Python, Java, and Matlab

Installing OpenCV with Anaconda (conda-forge packages):
$ conda install -c conda-forge opencv

Nota Bene
If the above command hangs or fails with error message ‘‘Solving environment: failed with initial frozen solve. Retrying with flexible
solve’’, it is likely that there is dependency clash in the default conda environment.

⇒ Solution 1 (quick & dirty): update all packages and retry
$ conda update --all
$ conda install -c conda-forge opencv

⇒ Solution 2 (clean): create a separate environment where OpenCV is to be installed
$ conda create --name <name>
$ activate <name>
$ conda install -c conda-forge opencv

61 / 63

https://opencv.org/
https://anaconda.org/conda-forge/opencv


2. Exercises

2.1. install OpenCV

OpenCV (Open Source Computer Vision Library):
⇒ library of programming functions mainly aimed at real-time computer vision
⇒ written in C++ (primary interface), APIs in Python, Java, and Matlab

Installing OpenCV with Anaconda (conda-forge packages):
$ conda install -c conda-forge opencv

Nota Bene
If the above command hangs or fails with error message ‘‘Solving environment: failed with initial frozen solve. Retrying with flexible
solve’’, it is likely that there is dependency clash in the default conda environment.

⇒ Solution 1 (quick & dirty): update all packages and retry
$ conda update --all
$ conda install -c conda-forge opencv

⇒ Solution 2 (clean): create a separate environment where OpenCV is to be installed
$ conda create --name <name>
$ activate <name>
$ conda install -c conda-forge opencv

62 / 63

https://opencv.org/
https://anaconda.org/conda-forge/opencv


2. Exercises

2.2. exercises

Exercises !

63 / 63


	Motion estimation
	introduction
	cross-correlation methods
	optical flow methods

	Exercises
	install OpenCV
	exercises


	anm0: 
	0.179: 
	0.178: 
	0.177: 
	0.176: 
	0.175: 
	0.174: 
	0.173: 
	0.172: 
	0.171: 
	0.170: 
	0.169: 
	0.168: 
	0.167: 
	0.166: 
	0.165: 
	0.164: 
	0.163: 
	0.162: 
	0.161: 
	0.160: 
	0.159: 
	0.158: 
	0.157: 
	0.156: 
	0.155: 
	0.154: 
	0.153: 
	0.152: 
	0.151: 
	0.150: 
	0.149: 
	0.148: 
	0.147: 
	0.146: 
	0.145: 
	0.144: 
	0.143: 
	0.142: 
	0.141: 
	0.140: 
	0.139: 
	0.138: 
	0.137: 
	0.136: 
	0.135: 
	0.134: 
	0.133: 
	0.132: 
	0.131: 
	0.130: 
	0.129: 
	0.128: 
	0.127: 
	0.126: 
	0.125: 
	0.124: 
	0.123: 
	0.122: 
	0.121: 
	0.120: 
	0.119: 
	0.118: 
	0.117: 
	0.116: 
	0.115: 
	0.114: 
	0.113: 
	0.112: 
	0.111: 
	0.110: 
	0.109: 
	0.108: 
	0.107: 
	0.106: 
	0.105: 
	0.104: 
	0.103: 
	0.102: 
	0.101: 
	0.100: 
	0.99: 
	0.98: 
	0.97: 
	0.96: 
	0.95: 
	0.94: 
	0.93: 
	0.92: 
	0.91: 
	0.90: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


