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1. Introduction
Introduction
Last week: classification part-1 (ML2)
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Introduction

Last week: classification part-1 (ML2)
This week: classification part—2 (M L3) (NB: several figures were adapted courtesy of A. Ley & R. Hansch from TU-Berlin)
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1. Introduction
Introduction

Classification task

Input
® Goal: (e.g. satellite image)
Learn the mapping between low level features, and
high level information (e.g. semantic classes) l

Feature extraction

® Steps: (e.g. handcrafted or learned)
1. features extraction (e.g. handcrafted | learned)
2. learning algorithm (e.g. probablity-based | not)

Learning Algorithm

® Strategies: (e.g. probability-based or not)
= last week:
handcrafted features + probability-based learning
= this week: Output (classification)

(e.g. land-use)
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2. Principal Component Analysis (PCA)
2.1. introduction

Principal Component Analysis (PCA)

= PCA is an unsupervised learning technique

— in contrast to supervised learning, unsupervised learning algorithms operate on unlabeled data (we only have
a set of k features Xi, Xo, ..., X measured on n observations, without any associated target variable Y, thus
we are not interested in any prediction task)
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Principal Component Analysis (PCA)

= PCA is an unsupervised learning technique

— in contrast to supervised learning, unsupervised learning algorithms operate on unlabeled data (we only have
a set of k features Xi, Xo, ..., X measured on n observations, without any associated target variable Y, thus
we are not interested in any prediction task)

= PCA is the most popular dimensionality reduction algorithm:

— it is used to reduce data dimensionality, while preserving as much of the variance as possible

— it is often used as data pre-processing technique before supervised techniques are applied (e.g. feature
extraction to reduce computational load of the classifier)
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= Intuitive explanation: which angle captures the most information about the teapot?
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2. Principal Component Analysis (PCA)

2.1. introduction

Principal Component Analysis (PCA)

= PCA is an unsupervised learning technique

— in contrast to supervised learning, unsupervised learning algorithms operate on unlabeled data (we only have
a set of k features Xi, Xa, ..., Xx measured on n observations, without any associated target variable Y, thus
we are not interested in any prediction task)

= PCA is the most popular dimensionality reduction algorithm:

— it is used to reduce data dimensionality, while preserving as much of the variance as possible
— it is often used as data pre-processing technique before supervised techniques are applied (e.g. feature
extraction to reduce computational load of the classifier)

= Intuitive explanation: which angle captures the most information about the teapot?

NB: run animation with PDF reader having built-in JS engine 10/78



2. Principal Component Analysis (PCA)

2.1. introduction

Principal Component Analysis (PCA)

= PCA is an unsupervised learning technique

— in contrast to supervised learning, unsupervised learning algorithms operate on unlabeled data (we only have
a set of k features Xi, Xa, ..., Xx measured on n observations, without any associated target variable Y, thus
we are not interested in any prediction task)

= PCA is the most popular dimensionality reduction algorithm:

— it is used to reduce data dimensionality, while preserving as much of the variance as possible
— it is often used as data pre-processing technique before supervised techniques are applied (e.g. feature
extraction to reduce computational load of the classifier)

= Intuitive explanation: which angle captures the most information about the teapot?

1st principal component
= 1st “eigen vector”
(longest axis)
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2. Principal Component Analysis (PCA)

2.1. introduction

Principal Component Analysis (PCA)

= PCA is an unsupervised learning technique

— in contrast to supervised learning, unsupervised learning algorithms operate on unlabeled data (we only have
a set of k features Xi, Xa, ..., Xx measured on n observations, without any associated target variable Y, thus
we are not interested in any prediction task)

= PCA is the most popular dimensionality reduction algorithm:

— it is used to reduce data dimensionality, while preserving as much of the variance as possible
— it is often used as data pre-processing technique before supervised techniques are applied (e.g. feature
extraction to reduce computational load of the classifier)

= Intuitive explanation: which angle captures the most information about the teapot?

1st principal component
= 1st “eigen vector”
(longest axis)

2nd principal component

= 2nd “eigen vector”
(2nd longest axis L to 1st axis)
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2. Principal Component Analysis (PCA)

2.1. introduction

PCA toy example

We have several wine bottles in our cellar, 11 features (alcohol, acidity, etc.) describe its quality.
Which features best define it, are there related features (i.e. covariant) which are redundent?

fixed acidity volatile acidity cltric acld residual sugar chiorides free sulfur dioxide total sulfur dioxide denslty pH sulphates alcohol quality
[ = _ o 74 0.70 0.00 19 0.076 1.0 340 09978 3.51 0.56 9.4 5
UU\]K ]D!"' 1 78 0.88 0.00 26 003 2650 67.0 03968 3.20 068 98 5
. i i i

‘I Y 2 78 0.76 0.04 23 0.092 15.0 540 09970 3.26 065 9.8 5
| | | 1 ‘ 3 1.2 028 056 19 0075 17.0 600 039980 3.16 058 98 6

S S S - - S _ S S -
4 74 070 0.00 19 0076 110 340 09978 351 05 94 5
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2. Principal Component Analysis (PCA)

2.1. introduction

PCA toy example

We have several wine bottles in our cellar, 11 features (alcohol, acidity, etc.) describe its quality.
Which features best define it, are there related features (i.e. covariant) which are redundent?

fixed acidity volatile acidity citric acid residual sugar chiorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality

[ = _ o 74 0.70 0.00 19 0.076 1.0 340 09978 3.51 0.56 9.4 5
UU\}K ’D!"' 1 78 088 0.00 26 0.096 250 670 09968 320 068 9.8 5
‘ ‘I 2 78 0.76 0.04 23 0.092 15.0 540 09970 3.26 0.65 9.8 5
I | i ‘ 3 1.2 028 0.56 1.9 0.075 17.0 60.0 0.9980 3.16 0.58 9.8 6

L . - S e .
4 74 070 0.00 19 0.076 1.0 340 09978 351 0.56 94 5

= PCA allows to summarize each wine with fewer characteristics
= reduce data dimensions
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2. Principal Component Analysis (PCA)

2.1. introduction

PCA toy example

We have several wine bottles in our cellar, 11 features (alcohol, acidity, etc.) describe its quality.
Which features best define it, are there related features (i.e. covariant) which are redundent?

fixed acidity volatile acidity citric acid residual sugar chiorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality

= o 74 0.70 0.00 19 0.076 1.0 340 09978 3.51 0.56 9.4 5
UU\]K ’U!"' 1 78 088 0.00 26 009 25.0 67.0 03968 3.20 068 98 5
1 ‘ I ‘I I T 2 78 0.76 0.04 23 0.092 15.0 540 09970 3.26 065 9.8 5

] 1 | I 1 1 1 | 3 112 028 056 19 0075 17.0 600 039980 3.16 058 98 6

b e e o ot 4 74 070 0.00 19 0076 1.0 340 09978 351 056 9.4 5

= PCA allows to summarize each wine with fewer characteristics
= reduce data dimensions

= PCA does not select some features and discards others,
instead it defines new features (using linear combinations of available features)
which will best represent wine variability
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2. Principal Component Analysis (PCA)

2.1. introduction

PCA toy example

We have several wine bottles in our cellar, 11 features (alcohol, acidity, etc.) describe its quality.
Which features best define it, are there related features (i.e. covariant) which are redundent?

fixed acidity volatile acidity citric acid residual sugar chiorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality

= o 74 0.70 0.00 19 0.076 1.0 340 09978 3.51 0.56 9.4 5
UU\]K ’U!"' 1 78 088 0.00 26 009 25.0 67.0 03968 3.20 068 98 5
1 ‘ I ‘I I T 2 78 0.76 0.04 23 0.092 15.0 540 09970 3.26 065 9.8 5

] 1 | I 1 1 1 | 3 112 028 056 19 0075 17.0 600 039980 3.16 058 98 6

b e e o ot 4 74 070 0.00 19 0076 1.0 340 09978 351 056 9.4 5

= PCA allows to summarize each wine with fewer characteristics
= reduce data dimensions

= PCA does not select some features and discards others,
instead it defines new features (using linear combinations of available features)
which will best represent wine variability

How?
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2. Principal Component Analysis (PCA)

2.2. how it works

Consider 2 correlated features x and y:

17/78



2. Principal Component Analysis (PCA)

2.2. how it works

Consider 2 correlated features x and y:

= a new “feature” (red dots e) can be constructed by drawing a
line through the cloud and projecting all points onto it
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2. Principal Component Analysis (PCA)
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Consider 2 correlated features x and y:

= a new “feature” (red dots e) can be constructed by drawing a
line through the cloud and projecting all points onto it

= linear combination wix 4+ way
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2. Principal Component Analysis (PCA)

2.2. how it works

Consider 2 correlated features x and y:

= a new “feature” (red dots e) can be constructed by drawing a
line through the cloud and projecting all points onto it

=> linear combination w;x 4+ wyy e T Tt
= PCA will find the “best” line according to 2 criteria:

® maximum variance of the red dots (i.e., spread along black line) >

® minimum distance to black line (i.e., length of red lines)

NB: run animation with PDF readers having built-in JavaScript engine
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2. Principal Component Analysis (PCA)

2.2. how it works

Consider 2 correlated features x and y:

= a new “feature” (red dots ) can be constructed by drawing a
line through the cloud and projecting all points onto it

= linear combination wix 4+ way
= PCA will find the “best” line according to 2 criteria:
® maximum variance of the red dots (i.e., spread along black line)

® minimum distance to black line (i.e., length of red lines)

= “best” line = 1st eigenvector = 1st principal component

Bl 1st eigenvector
Il 2nd eigenvector
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2. Principal Component Analysis (PCA)
2.2. how it works

Consider 2 correlated features x and y:

= a new “feature” (red dots ) can be constructed by drawing a
line through the cloud and projecting all points onto it

= linear combination wix 4+ way
= PCA will find the “best” line according to 2 criteria:
® maximum variance of the red dots (i.e., spread along black line)

® minimum distance to black line (i.e., length of red lines)

= “best” line = 1st eigenvector = 1st principal component

= we can project the data on the principal components, and
thereby reduce dimensionality

NB: if only one eigenvector was kept, the transformed data would have only one

2"9 principal component

dimension

15t principal component
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2. Principal Component Analysis (PCA)

2.3. implementation steps

Implementation steps

Math reminders

variance o> = measure of the “spread” or “extent” of the data about some particular axis

= average of the squared differences from the mean

= square of standard deviation (o)

Z:\;(X" - %7

vary =
x N
N _
E ,.:1(}/,' - Y)2
vary, = 7[\]

covariance = measure the level to which two variables vary together

ZN (xi = X)(yi — )

i=1
N—1

vary covy,y
covy x vary

covx,y

covariance matrix
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2. Principal Component Analysis (PCA)

2.3. implementation steps

Math reminders (c nue

. . var, cov;
Covariance matrix = |: x X’y:|

covy x vary
Eigenvalue analysis of covariance matrix = find directions with maximal variance
® eigenvectors (v, »): represent the directions of the largest variance of the data

® eigenvalues (A1, \p): represent the magnitude of this variance in those directions

Determinant and trace of covariance matrix
® determinant det(covmat) = A1 Ap: measures the “spread” of the data captured by the covariance matrix

® trace trace(covmat) = A1 + Ap: measures the “total variance” captured by the covariance matrix

[t o mat = |74
covmat = 0 1 covmat = A 5

highly correlated variables
uncorrelated variables [ 104 Ceely VL 24 /78



2. Principal Component Analysis (PCA)

2.3. implementation steps

Implementation steps (example with 2 variables)

centered data

var x

- x.mean()
y - y.mean()

1. center points around origin (0, 0)
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2. Principal Component Analysis (PCA)

2.3. implementation steps

Implementation steps (example with 2 variables)

centered data centered data + eigenvectors

2
14 + + 14
+
+
+
> >
5 0 > ol
5 5
2 — 2
+ |+
+
1 + -1
+
— 15t eigenvector (largest eigenvalue)
— 2nd eigenvector (2nd largest eigenvalue)
-2 } } -2 7 ; 7
) -1 0 1 2 -2 -1 0 1 2
var x var x
- 522228 cov = np.cov(x, y)
o eigval, e ¢ = np.linalg.eig(cov)

idx = np.argsort(-eig_val)
eig.val, eigvec = eigval[idx], eig.vec[:,idx]
1. center points around origin (0, 0)

2. compute covariance matrix — get eigenvalues & eigenvectors (= Principal Components) — sort by eigenvalue
eigenvectors represent the directions of the largest variance of the data, eigenvalues represent the magnitude of this variance in those directions

=
= highest eigenvalue = direction with most variance (data dispersion) = 15t principal component
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2. Principal Component Analysis (PCA)

2.3. implementation steps

Implementation steps (example with 2 variables)

5 centered data 5 centered data + eigenvectors ) projected data on eigenvectors
14 + * 14 a1
+ e
+ 2
+ 2 T
2 >0 £, + L+
o # o 1 # S
> + |+ e ° * N + N
S
S
* £
1 + -1 a-1
+
—— 1st eigenvector (largest eigenvalue) + projection on 1 eigenvector
— 2nd cigenvector (2nd largest cigenvalue) +  projection on 2 eigenvectors
-2 T r -2 T : T -2 T t T
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
var x var x principle component 1
X = X - X.mean
S moang cov = np.cov(x, y) XY = np.array([x, y1).T
J s eig_val, eig.vec = np.linalg.eig(cov) XY_proj = np.dot (XY, eigvec[:2].T)

idx = np.argsort(-eig_val)
eig.val, eigvec = eigval[idx], eig.vec[:,idx]

1. center points around origin (0, 0)

2. compute covariance matrix — get eigenvalues & eigenvectors (= Principal Components) — sort by eigenvalue
= eigenvectors represent the directions of the largest variance of the data, eigenvalues represent the magnitude of this variance in those directions

= highest eigenvalue = direction with most variance (data dispersion) = 15t principal component

3. project the data onto the principal components (PCs)

= if only 1 eigenvector was kept, the 2 original features (var x, var y) could be reduced to 1 dimension 27/78




2. Principal Component Analysis (PCA)

2.3. implementation steps

Implementation steps (back to our toy-example on wine quality)

= do the same with the 11 features: search for the principal components in a 11-dimensional space

NB: the maximum number of components is restricted by the number of features
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2. Principal Component Analysis (PCA)

2.3. implementation steps

Implementation steps (back to our toy-example on wine quality)

= do the same with the 11 features: search for the principal components in a 11-dimensional space

NB: the maximum number of components is restricted by the number of features

Q1: How much data variance is explained by each principal component (eigenvector)?

25 1

20

15 A

10 A

Data variance explained [%]

0 2 4 6 8 10
Principal Components
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2. Principal Component Analysis (PCA)

2.3. implementation steps

Implementation steps (back to our toy-example on wine quality)

= do the same with the 11 features: search for the principal components in a 11-dimensional space

NB: the maximum number of components is restricted by the number of features

Q1: How much data variance is explained by each principal component (eigenvector)?

6 first principal components
25 explain 95% of data variation

20

15 A

10 A

Data variance explained [%]

0 2 4 6 8 10
Principal Components
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2. Principal Component Analysis (PCA)

2.3. implementation steps

Implementation steps (back to our toy-example on wine quality)

= do the same with the 11 features: search for the principal components in a 11-dimensional space

NB: the maximum number of components is restricted by the number of features

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?

0 1 2 3 a 5 6 7 8 9 10

0 0489314 -0.238584 0463632 0.146107 0.212247 -0.036156 0.023575 0395353 -0.438520 0.242921 -0.113232

-0.110503 0274930 -0.151791 0272080 0.148052 0513567 0.563487 0233575 0.006711 -0.037554 -0.386151

~

0123302 -0.449963 0.236247 0.101283 -0.092614 0.426793 0.322415 -0.338671 0.057697 0279786 0.471673

w

0229617 0.078960 -0.079418 -0.372793 0666195 -0.043538 -0.034577 -0.174500 -0.003788 0550872 -0.122181

-

-0.082614 0218735 -0.058573 0732144 0246501 -0.159152 -0.222465 0.157077 0.267530 0.225962 0.350681

«

0101479 0.411443 0.063593 0.049156 0.304339 -0.014000 0.136308 -0.391152 -0.522116 -0.361263 0.361645

@

0350227 0533735 0.105497 0.290663 0370413 -0.116596 -0.093662 -0.170481 -0.025138 -0.447469 -0.327651

~

0177595 -0.078775 -0.377516 0299845 -0.357009 -0.204781 0.019036 -0.239223 -0.561391 0.374604 -0.217626

0194021 0.128110 0.381450 -0.007523 -0.111339 -0.635405 0.592116 -0.020719 0.167746 0.058367 -0.037603

©

0249523 0365925 0.621677 0.082872 -0.217671 0.248483 -0.370750 -0.239990 -0.010870 0.112320 -0.303015

10 0.639691 0002389 -0.070910 0.184030 0.053065 -0.051421 0.068702 -0.567332 0.340711 0.069555 -0.314526
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2. Principal Component Analysis (PCA)

2.3. implementation steps

Implementation steps (back to our toy-example on wine quality)

= do the same with the 11 features: search for the principal components in a 11-dimensional space

NB: the maximum number of components is restricted by the number of features

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?

0 1 2 3 a 5 6 7 8 9 10

0 0489314 0238584 0463632 046107 0212247 0036158 0023575 0395353 0438520 0242821 -0.113282 Principal Component 1

-0.110503 0274930 -0.151791 0272080 0.148052 0513567 0.563487 0233575 0.006711 -0.037554 -0.386151

~

0123302 -0.449963 0.236247 0.101283 -0.092614 0.426793 0.322415 -0.338671 0.057697 0279786 0.471673

w

0229617 0.078960 -0.079418 -0.372793 0666195 -0.043538 -0.034577 -0.174500 -0.003788 0550872 -0.122181

-

-0.082614 0218735 -0.058573 0732144 0246501 -0.159152 -0.222465 0.157077 0.267530 0.225962 0.350681

«

0101479 0.411443 0.063593 0.049156 0.304339 -0.014000 0.136308 -0.391152 -0.522116 -0.361263 0.361645

@

0350227 0533735 0.105497 0.290663 0370413 -0.116596 -0.093662 -0.170481 -0.025138 -0.447469 -0.327651

~

0177595 -0.078775 -0.377516 0299845 -0.357009 -0.204781 0.019036 -0.239223 -0.561391 0.374604 -0.217626

0194021 0.128110 0.381450 -0.007523 -0.111339 -0.635405 0.592116 -0.020719 0.167746 0.058367 -0.037603

©

0249523 0365925 0.621677 0.082872 -0.217671 0.248483 -0.370750 -0.239990 -0.010870 0.112320 -0.303015

10 0.639691 0002389 -0.070910 0.184030 0.053065 -0.051421 0.068702 -0.567332 0.340711 0.069555 -0.314526

PC 1 = 0.49*feature0 + -0.24*featurel + 0.46*feature2 + 0.15%feature3 + 0.21*feature4 + -0.04*feature5 + 0.02*feature6 + 0.40*feature7 + -0.44*feature8 + 0.24*feature9 + -0.11*feature10
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2. Principal Component Analysis (PCA)

2.3. implementation steps

Implementation steps (back to our toy-example on wine quality)

= do the same with the 11 features: search for the principal components in a 11-dimensional space

NB: the maximum number of components is restricted by the number of features

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?
Q3: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?
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2. Principal Component Analysis (PCA)

2.3. implementation steps

Implementation steps (back to our toy-example on wine quality)

= do the same with the 11 features: search for the principal components in a 11-dimensional space

NB: the maximum number of components is restricted by the number of features

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?
Q3: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?

Prediction accuracy of wine quality (categorical variable = classification task using kNN):
® using 11 original features = accuracy = 0.79

® using 6 first principal components = accuracy = 0.78
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2. Principal Component Analysis (PCA)

2.3. implementation steps

Implementation steps (back to our toy-example on wine quality)

= do the same with the 11 features: search for the principal components in a 11-dimensional space

NB: the maximum number of components is restricted by the number of features

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?
Q3: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?

Prediction accuracy of wine quality (categorical variable = classification task using kNN):
® using 11 original features = accuracy = 0.79
® using 6 first principal components = accuracy = 0.78

= PCA can successfully reduce data dimensionality,
and achieve (almost) the same prediction accuracy with fewer features
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2. Principal Component Analysis (PCA)

2.3. implementation steps

Implementation steps (back to our toy-example on wine quality)

= do the same with the 11 features: search for the principal components in a 11-dimensional space

NB: the maximum number of components is restricted by the number of features

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?
Q3: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?

Prediction accuracy of wine quality (categorical variable = classification task using kNN):
® using 11 original features = accuracy = 0.79
® using 6 first principal components = accuracy = 0.78

= PCA can successfully reduce data dimensionality,
and achieve (almost) the same prediction accuracy with fewer features

= how about using PCA on images?
— Sentinel-2 exercise: a crop of 900 pixels (4-bands 15x15 pixels) can be reduced
fairly accurately to 32 points! (i.e., projection in a 32-dimensional space, first 32 pcs)
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3. Classification algorithms (perceptron + SVM)

3. Classification algorithms (perceptron + SVM)
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3. Classification algorithms (perceptron + SVM)

Classification algorithms (perceptron + SVM)

Once features have been extracted, we can feed to the classifier! (recall last week lecture)

= the classification algorithm needs to learn the decision boundary (i.e. surface separating the different
classes) in an N-dimensional feature space:

® probabilistic approaches:

- Logistic Regression = /ast week
- Softmax Regression = /ast week
- Naive Bayes

® non-probabilistic approaches:

- k-Nearest Neighbors (kNN) = /ast week
- Perceptron = today!

- Support Vector Machines (SVM) = today!

- Random Forest = next lectures
- Convolutional Neural Networks (CNNs) = next lectures
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3. Classification algorithms (perceptron + SVM)
Classification algorithms (perceptron + SVM)

Choosing a classifier

® Logistic regression (& Softmax) (/ast week lecture)

= probability-based linear classification method

= advantage: simple, fast, interpretable
= disadvantage: limited to linear decision boundaries

39/78



3. Classification algorithms (perceptron + SVM)

Classification algorithms (perceptron + SVM)

Choosing a classifier

® Logistic regression (& Softmax) (/ast week lecture)

= probability-based linear classification method
= advantage: simple, fast, interpretable
= disadvantage: limited to linear decision boundaries

® k-Nearest Neighbor (kNN) (/ast week lecture)

= label images by comparing them to (annotated) images from the training set
= advantage: non-linear decision boundaries
= disadvantage: classifier needs to keep all training data for future comparisons with the test data (classifying test

images is expensive as it requires comparison to all training images, inefficient with v. large datasets >GB)
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3. Classification algorithms (perceptron + SVM)

Classification algorithms (perceptron + SVM)

Choosing a classifier

® Logistic regression (& Softmax) (/ast week lecture)

= probability-based linear classification method
= advantage: simple, fast, interpretable
= disadvantage: limited to linear decision boundaries

® k-Nearest Neighbor (kNN) (/ast week lecture)

= label images by comparing them to (annotated) images from the training set
= advantage: non-linear decision boundaries
= disadvantage: classifier needs to keep all training data for future comparisons with the test data (classifying test

images is expensive as it requires comparison to all training images, inefficient with v. large datasets >GB)

® Support Vector Machines (this week lecture)

= parametric linear classification method
= advantage: once the parameters are learnt, training data can be discarded (classification of new images is fast:

simple matrix multiplication with learned weights, not an exhaustive comparison to every single training data)
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3. Classification algorithms (perceptron + SVM)
Classification algorithms (perceptron + SVM)

Choosing a classifier

Logistic regression (& Softmax) (/ast week lecture)

= probability-based linear classification method
= advantage: simple, fast, interpretable
= disadvantage: limited to linear decision boundaries

k-Nearest Neighbor (kNN) (/ast week lecture)

= label images by comparing them to (annotated) images from the training set
= advantage: non-linear decision boundaries
= disadvantage: classifier needs to keep all training data for future comparisons with the test data (classifying test

images is expensive as it requires comparison to all training images, inefficient with v. large datasets >GB)

Support Vector Machines (this week lecture)

= parametric linear classification method
= advantage: once the parameters are learnt, training data can be discarded (classification of new images is fast:

simple matrix multiplication with learned weights, not an exhaustive comparison to every single training data)

Convolutional Neural Networks (coming weeks)

= CNNs map image pixels to classes, but the mapping is more complex and will contain more parameters
= advantage: very powerful
= disadvantage: needs LOTS of datal!
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3. Classification algorithms (perceptron + SVM)

3.1. Perceptron

Recall our toy example from last week: classify fruit images into either bananas or apples

Input image feature space decision boundary

A

“' elongated — [ )

A

elongated —{

Bananas

(Z aumyesy)
uonebuojd
(z 21meay)
uonebuola

spherical | g ® ° e @ o .. ® spherical - _
T T > T T >
green yellow red green yellow red
hue (feature 1) hue (feature 1)
[ = how is the decision boundary learned?
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3. Classification algorithms (perceptron + SVM)

3.1. Perceptron

Perceptron classifier

= algorithm which classifies data based on linear decision boundary
NB: the original perceptron algorithm is a binary classifier (similar to logistic regression but non-probabilistic)

NB: in an N-dimensional feature space, the decision boundary is a hyperplane

= perceptron:

A
y = sign(w’x + b) ° °
[
® §c{-1,1}: predicted class — banana or apple ®e 00 o
® x € R?: feature vector — hue, elongation [} o ® °o® w
® w € R?: weight vector — needs to be learned o © : °
® b € R: bias — needs to be learned ® e .. ®
® sign: sign function returning the sign of a real number _— | e @ ¢ ® e ®
bwl| @ ©® o® © © g
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https://en.wikipedia.org/wiki/Sign_function

3. Classification algorithms (perceptron + SVM)

3.1. Perceptron

Perceptron classifier

= perceptron: ’5/ =sign(w’x 4+ b) ‘

= problem: multiple “good” boundaries can be found




3. Classification algorithms (perceptron + SVM)
3.1. Perceptron

Perceptron classifier

= perceptron: ’f/ =sign(w’x 4+ b) ‘

= problem: multiple “good” boundaries can be found X,

= need to find the optimal hyperplane ®
= boundary with maximal margins [
= perceptron of maximal stability to new inputs

large margins




3. Classification algorithms (perceptron + SVM)

3.1. Perceptron

Perceptron classifier

= perceptron: ’f/ =sign(w’x 4+ b) ‘

I

problem: multiple “good” boundaries can be found X,

= need to find the optimal hyperplane ®
= boundary with maximal margins [
= perceptron of maximal stability to new inputs

= the Support Vector Machine (SVM) algorithm will find [

large margins

the optimal hyperplane and learn the best weights w and bias ()
b to classify the data o
[
[
[

| 0o0%o

, -

H H =%



3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Support Vector Machine (SVM)

= perceptron: ’f/ =sign(w’x 4+ b) ‘

= definitions:
® support vector points = points closest to the hyperplane
(only these points are contributing to the result, other points are not)

® margin = distance between hyperplane & support vector points
2

[wll




3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Support Vector Machine (SVM)

= perceptron: ’f/ =sign(w’x 4+ b) ‘

= definitions:

® support vector points = points closest to the hyperplane
(only these points are contributing to the result, other points are not)
® margin = distance between hyperplane & support vector points
2

[wll

= maximize margin:

Tsi+b>1 ify;=+1
, subject to WTX P I imo
w!xj+b<1 ifyy=-1

which is equivalent to:

max
w ‘ w

min ||w||?, subject to y;(w'x; — b) > 1
w




3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Support Vector Machine (SVM)

= How can outliers be handled?

XZ
A How to handle "outliers" ?
() [
o
o
® O
o ©
[
[
[
[
e®%eo
X,




3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Support Vector Machine (SVM)

= How can outliers be handled?
= is a hard-margin with 100% accuracy good?

X, points linearly separated, BUT very narrow margin

A




3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Support Vector Machine (SVM)

= How can outliers be handled?
= is a hard-margin with 100% accuracy good?

= no, allow small errors (soft-margin) to favour overall better
model

A

X,

4 allow small errors (soft-margin)




3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Support Vector Machine (SVM)

= How can outliers be handled?
= is a hard-margin with 100% accuracy good?

= no, allow small errors (soft-margin) to favour overall better
model
= tolerate margin violation & favour large margin boundaries

A

X,

4 allow small errors (soft-margin)




3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Support Vector Machine (SVM)

= How can outliers be handled?
= is a hard-margin with 100% accuracy good?
= no, allow small errors (soft-margin) to favour overall better
model
tolerate margin violation & favour large margin boundaries

=
= optimization becomes:
N

min ][ + cZa, subject to yi(wx; — b) > 1§

i

C  regularization parameter
- small C = constraints easily ignored, large margin
- large C = towards hard-margin SVM

&; slack variable for each data point

where:

A

X,

4 allow small errors (soft-margin)




3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Side note: reformulating optimization in terms of regularization and loss function (anticipating DL lectures)

Learning an SVM has been formulated as a constrained optimization problem over w and &:
N
min ||w]|* + CZE; subject to: yi(w'x; —b) >1—&
w,&j ;

The constraint y;(w”x; — b) > 1 — & can be written more concisely as: y;f(x) >1—¢&
Together with & > 0, it is equivalent to: & = max(0,1 — yif(x;))

Hence the learning problem is equivalent to the unconstrained optimization problem over w:

N

min [|lw]® + CZmax(O, 1—yif(x))
W N -

regularization

! loss function (Hinge loss)
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3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Support Vector Machine (SVM)

= What if the features x; are not linearly separable?

0 ® o o
L4 °
® o
0o @ ©
°
e o

Y

56 /78



3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Support Vector Machine (SVM)

= What if the features x; are not linearly separable?
= compute new features x; — ¢(x)
¢(x) is a feature map, mapping x to ¢(x) where data is separable
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3. Classification algorithms (perceptron + SVM)
3.2. Support Vector Machine (SVM)

Support Vector Machine (SVM)

= What if the features x; are not linearly separable?
= compute new features x; — ¢(x)
¢(x) is a feature map, mapping x to ¢(x) where data is separable
= solve for w in high dimensional feature space
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3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Support Vector Machine (SVM)

What if the features x; are not linearly separable?
= compute new features x; — ¢(x)
¢(x) is a feature map, mapping x to ¢(x) where data is separable
= solve for w in high dimensional feature space
= data not lineary-seperable in original feature space become separable
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3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Kernel trick
The Representer Theorem states that the solution w can be written as a linear combination of the training data:

N
W= ax
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3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Kernel trick

The Representer Theorem states that the solution w can be written as a linear combination of the training data:

N
w=> =1 QUYiX
he linear classifier can therefore be reformulated as:

f(x)=w'x+b
N
-
E aiyi(xi x)+ b
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3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Kernel trick
The Representer Theorem states that the solution w can be written as a linear combination of the training data:
N
w = Zj:1 Qjyix
The linear classifier can therefore be reformulated as:

f(x)=w'x+b
N
-
Z aiyi(xi x)+ b

NB: this reformulation seems to have the disadvantage of a kNN classifier, i.e. requires the training data points x;.
However, many of the a; = Q: the ones that are non-zero define the support vector points x;
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3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Kernel trick
The Representer Theorem states that the solution w can be written as a linear combination of the training data:
N
w = Zj:1 Qjyix
The linear classifier can therefore be reformulated as:

f(x)=w'x+b
N
-
Z aiyi(xi x)+ b

NB: this reformulation seems to have the disadvantage of a kNN classifier, i.e. requires the training data points x;.
However, many of the a; = Q: the ones that are non-zero define the support vector points x;

Using the feature map ¢(x), it can be reformulated as:
N
F6) = 3 ami(6(a) 6(x)) + b

N
= Za;yfk(x/,x) +b

where k(x;, x) is known as a Kernel
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3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Kernel trick

® Classifier can be learnt and applied without explicitly computing ¢(x)
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3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Kernel trick
® Classifier can be learnt and applied without explicitly computing ¢(x)

e All that is required is the kernel k(x,x")
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3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Kernel trick
® Classifier can be learnt and applied without explicitly computing ¢(x)
e All that is required is the kernel k(x,x")

® Multiple kernels exist:
® linear kernels: k(x,x') = x"x’
— very fast and easy to train, but very simple
® polynomial kernels: k(x,x’) = (1 + x7x")9
— contains all polynomial terms up to degree d
® gaussian kernels: k(x,x’) = exp(—||x — x'||?/20?) (RBF kernel)
> kernel very powerful and most often used
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4. Exercise

4. Exercise
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EXERCISE.

classify land-use in satellite images (Sentinel-2) using PCA and SVM

PCA dimensionality reduction train SVM & apply land-use classification
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4. Exercise
Exercise
Part 1: apply PCA on satellite image crops

Original dataset
= take log & subtract mean

1 crop = (4,15,15)

20,000 x Bm

g

(20000, 4, 15, 15)
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4. Exercise

Exercise

Part 1: apply PCA on satellite image crops

Original dataset Vectorize dataset
= take log & subtract mean

1 crop = (1,900)
[ ]

1 crop = (4,15,15)

20,000 x Bm :>

(20000, 4, 15, 15) (20000, 900)
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4. Exercise

Exercise

Part 1: apply PCA on satellite image crops

Original dataset

Vectorize dataset
= take log & subtract mean

Create covariance matrix
(mean covmat of all crops)

1 crop = (1,900)
1 crop = (4,15,15) - .

1 crop = (1,900)
——

20,000 x

np.outer (crop, crop)

(900, 900)
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4. Exercise

Exercise

Part 1: apply PCA on satellite image crops

Original dataset

Vectorize dataset Create covariance matrix Get eigenvectors
= take log & subtract mean (mean covmat of all crops) & eigenvalues
1 crop = (1,900)

1 crop = (4,15,15) - .

1 crop = (1,900)
——

20,000 x

=N

np.outer (crop, crop)

np.linalg.eig(covmat)

(900, 900) (900, 900)

72/78



4. Exercise

Exercise

Part 1: apply PCA on satellite image crops

Original dataset Vectorize dataset

Create covariance matrix Get eigenvectors Reshape eigenvectors
= take log & subtract mean (mean covmat of all crops) & eigenvalues = principal components as images

1 crop = (1,900) . 1900

1 crop = (1,900) ——— -

1 crop = (4,15,15) - ] = e
20,000 x :: :: :: C
np.outer (crop, crop) np.linalg.eig(covmat) np.reshape (eig_vec, (50 ))
(20000, 4, 15, 15) (20000, 900) (900, 900) (900, 900) (900, 4, 15, 15)
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4. Exercise

Exercise

Part 1: apply PCA on satellite image crops

Original dataset Vectorize dataset Create covariance matrix Get eigenvectors
= take log & subtract mean (mean covmat of all crops) & eigenvalues

Reshape eigenvectors
= principal components as images

T crop = (1,900)
1 crop = (4,15,15) " !

20,000 x

np.outer (crop, crop) np.linalg.eig(covmat)

=N

(20000, 900) (900, 900)

(900, 900)

Compute features
= project each crop on first 32 pc

crops
(20000,900) 1 crop projected on 32 pc

/ =(1,32) |

for i in range(20000): #
for j in range(32):
(i,3] = np.dot (cropli,
= (900,1) @ (1,900)
= (scalar)

np.reshape (eig_vec, (500,4,15,15))

(900, 4, 15, 15)

74/78



4. Exercise

Exercise

Part 1: apply PCA on satellite image crops

Original dataset
= take log & subtract mean

Vectorize dataset

Create covariance matrix

Get eigenvectors
(mean covmat of all crops)

Reshape eigenvectors
& eigenvalues

1 crop = (4,15,15)

—>

20,000 x

1 crop = (1,900)
G ]

= principal components as images

eigen values

(1,900)

=> SN

>

(20000, 4, 15, 15)

np.outer (crop, crop)

np.linalg.eig(covmat)

Compute features
= project each crop on first 32 pc

(20000, 900)

np. reshape (eig_vec, (500, 4,15,15))
(900, 900) (900, 900) (900, 4, 15, 15)

Reconstruct crops
= reconstruct crop from its 32 features & 32 first pcs

original crop

reconstructed crop
features of crop #1 = (1,32)
crops features
(20000,32)
(20000,900) 1 crop projected on 32 pc
=(1,32)
features 5! 1 reconstructed crop
atures inc mp. [} -
i (20000,32) | ’ H‘ (4,15,15)
for i in range(20000): #loop crops

for j in range (32
u [E¥5)]

np.dot (crop(i,
(900,1) @ (1,9
(scalar)

Reconstruction crop #1:

+ pelds

reconstruction = mean_crops

#(4, 15, 15)
for i in range(32):

#loop cr /
reconstruction += features[0,i] * pcli,:

(scalar) * (4,15,15)
= (4,5,15)
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4. Exercise

Exercise

Original dataset

Part 1: apply PCA on satellite image crops

Vectorize dataset Create covariance matrix Get eigenvectors Reshape eigenvectors
= take log & subtract mean (mean covmat of all crops) & eigenvalues = principal components as images
1 crop = (1,900) eigen values = (1,900)
1 crop = (4,15,15) C ] — =
20,000 x [ [ [ C
np.outer (crop, crop) np.linalg.eig(covmat) np. reshape (eig_vec, (9 5,15))

(20000, 4, 15, 15) (20000, 900) (900, 900) (900, 900) (900, 4, 15, 15)
Compute features Reconstruct crops

= proinct anch cran an firck 39 e — racanctrict cran fram ite 22 faaturac £, 3 firck nec

q q . crop
= a crop of 900 pixels (4x15x15) can be reduced fairly accurately to 32 points,
i.e., a projection in a 32-dimensional space (first 32 pcs)
20000,32) -
(20000,900) U ~ 1 crop projected on 32 pc v
\:u/ - (132) E>
features = 1 reconstructed crop
(20000,32) = (4.15.15)
for i in range(20000): #loop crops Reconstruction crop #1:
for j in range(32):
ures(i, ] = np.dot (crop(i,t::], pelj, t::]) reconstruction = mean_crops
(900,1) @ (1,900) for i in range(32):
= (scalar)

#(4, 15, 15)
#loop
reconstruction += features(0,i] * pcli,

/

111]

= (scalar) * (4,15,15)
= (4,5,15)
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4. Exercise

Exercise

Part 1: apply PCA on satellite image crops

Original dataset

Vectorize dataset
= take log & subtract mean

Create covariance matrix

Get eigenvectors
(mean covmat of all crops)

Reshape eigenvectors
& eigenvalues

= principal components as images

1 crop = (1,900)
1 crop = (4,15,15) C ]

(1,900)

> > = >

eigen values
1 crop = (1,900) laen
— R

20,000 x

np.outer (crop, crop) np.linalg.eig(covmat) np. reshape (eig_vec, (900,4,15,15))
00, 4, 15, 15) (20000, 900) (900, 900) (900, 900) (900, 4, 15, 15)

Compute features Reconstruct crops

= proinct anch cran an firck 39 e

= a crop of 900 pixels (4x15x15) can be reduced fairly accurately to 32 points,
i.e., a projection in a 32-dimensional space (first 32 pcs)
=== 1 crop projected on 32 pc ‘J\ ‘ (oueesa ‘ ‘ B ’—HH

crop
(20000,900>| |||_| ~

| T
= this dimensionality-reduction of the dataset allows us to feed it to a classifying algorithm

feature E
(20000,32) —] (4,15,15)

for i in range(20000):  #loop

crops Reconstruction crop #1:
for j in range(32):
[i,3] = np.dot (cropli,:::] reconstruction = mean_crops  #(4, 15, 15)
(900,1) @ (1,900)

for i in range(32) #1loop /
= (scalar)

reconstruction += features(0,i] * pcli,

= (scalar) * (4,15,15)
= (4,5,15)
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4. Exercise
Exercise

Part 2: train SVM on principal components and apply to classify full image

PCA dimensionality reduction land-use classification
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