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ML

ML1ML 2

ML 3

ML 3

source 3 / 78

https://noeliagorod.com/2019/05/21/machine-learning-for-everyone-in-simple-words-with-real-world-examples-yes-again/


1. Introduction

Introduction

Last week: classification part-1 (ML2)
This week: classification part-2 (ML3) (NB: several figures were adapted courtesy of A. Ley & R. Hänsch from TU-Berlin)
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1. Introduction

Introduction

Classification task

• Goal:
Learn the mapping between low level features, and
high level information (e.g. semantic classes)

• Steps:
1. features extraction (e.g. handcrafted | learned)
2. learning algorithm (e.g. probablity-based | not)

• Strategies:
⇒ last week:

handcrafted features + probability-based learning
⇒ this week:

learned features (PCA) + SVM learning

Input
(e.g. satellite image)

Feature extraction
(e.g. handcrafted or learned)

Learning Algorithm
(e.g. probability-based or not)

Output (classification)
(e.g. land-use)
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2. Principal Component Analysis (PCA)

2.1. introduction

Principal Component Analysis (PCA)

⇒ PCA is an unsupervised learning technique
→ in contrast to supervised learning , unsupervised learning algorithms operate on unlabeled data (we only have

a set of k features X1, X2, ..., Xk measured on n observations, without any associated target variable Y , thus
we are not interested in any prediction task)

⇒ PCA is the most popular dimensionality reduction algorithm:
→ it is used to reduce data dimensionality, while preserving as much of the variance as possible
→ it is often used as data pre-processing technique before supervised techniques are applied (e.g. feature

extraction to reduce computational load of the classifier)

⇒ Intuitive explanation: which angle captures the most information about the teapot?
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1st principal component
= 1st “eigen vector”

(longest axis)
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= 2nd “eigen vector”

(2nd longest axis ⊥ to 1st axis)
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2. Principal Component Analysis (PCA)

2.1. introduction

PCA toy example
We have several wine bottles in our cellar, 11 features (alcohol, acidity, etc.) describe its quality.
Which features best define it, are there related features (i.e. covariant) which are redundent?

⇒ PCA allows to summarize each wine with fewer characteristics
⇒ reduce data dimensions

⇒ PCA does not select some features and discards others,
instead it defines new features (using linear combinations of available features)

which will best represent wine variability

How?
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2. Principal Component Analysis (PCA)

2.2. how it works

Consider 2 correlated features x and y :

⇒ a new “feature” (red dots •) can be constructed by drawing a
line through the cloud and projecting all points onto it
⇒ linear combination w1x + w2y
⇒ PCA will find the “best” line according to 2 criteria:

• maximum variance of the red dots (i.e., spread along black line)

• minimum distance to black line (i.e., length of red lines)

⇒ “best” line = 1st principal component
⇒ we can project the data on the principal components, and
thereby reduce dimensionality
NB: if only one eigenvector was kept, the transformed data would have only one
dimension
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2. Principal Component Analysis (PCA)

2.3. implementation steps

Implementation steps

Math reminders

variance σ
2 = measure of the “spread” or “extent” of the data about some particular axis

= average of the squared differences from the mean
= square of standard deviation (σ)

varx =

∑N
i=1

(xi − x̄)2

N

vary =

∑N
i=1

(yi − ȳ)2

N

covariance = measure the level to which two variables vary together

covx,y =

∑N
i=1

(xi − x̄)(yi − ȳ)

N − 1

covariance matrix =
[

varx covx,y
covy,x vary

]
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2. Principal Component Analysis (PCA)

2.3. implementation steps

Math reminders (continued)

Covariance matrix =
[

varx covx,y
covy,x vary

]
Eigenvalue analysis of covariance matrix ⇒ find directions with maximal variance

• eigenvectors (⃗v1, v⃗2): represent the directions of the largest variance of the data
• eigenvalues (λ1, λ2): represent the magnitude of this variance in those directions

Determinant and trace of covariance matrix
• determinant det(covmat) = λ1λ2: measures the “spread” of the data captured by the covariance matrix
• trace trace(covmat) = λ1 + λ2: measures the “total variance” captured by the covariance matrix
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2. Principal Component Analysis (PCA)

2.3. implementation steps

Implementation steps (example with 2 variables)

2 1 0 1 2
var x

2

1

0

1

2

va
r y

centered data

x = x - x.mean()
y = y - y.mean()

2 1 0 1 2
var x

2

1

0

1

2

va
r y

centered data + eigenvectors

1st eigenvector (largest eigenvalue)
2nd eigenvector (2nd largest eigenvalue)

cov = np.cov(x, y)
eig val, eig vec = np.linalg.eig(cov)
idx = np.argsort(-eig val)
eig val, eig vec = eig val[idx], eig vec[:,idx]

2 1 0 1 2
principle component 1

2

1

0

1

2

pr
in

cip
le

 c
om

po
ne

nt
 2

projected data on eigenvectors

projection on 1 eigenvector
projection on 2 eigenvectors

XY = np.array([x, y]).T
XY proj = np.dot(XY, eig vec[:2].T)

1. center points around origin (0, 0)
2. compute covariance matrix → get eigenvalues & eigenvectors (= Principal Components) → sort by eigenvalue

⇒ eigenvectors represent the directions of the largest variance of the data, eigenvalues represent the magnitude of this variance in those directions
⇒ highest eigenvalue = direction with most variance (data dispersion) = 1st principal component

3. project the data onto the principal components (PCs)
⇒ if only 1 eigenvector was kept, the 2 original features (var x, var y) could be reduced to 1 dimension 25 / 78
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2. Principal Component Analysis (PCA)

2.3. implementation steps

Implementation steps (back to our toy-example on wine quality)

⇒ do the same with the 11 features: search for the principal components in a 11-dimensional space
NB: the maximum number of components is restricted by the number of features

Q1: How much data variance is explained by each principal component (eigenvector)?
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2.3. implementation steps

Implementation steps (back to our toy-example on wine quality)

⇒ do the same with the 11 features: search for the principal components in a 11-dimensional space
NB: the maximum number of components is restricted by the number of features

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?

Principal Component 1

PC 1 = 0.49*feature0 + -0.24*feature1 + 0.46*feature2 + 0.15*feature3 + 0.21*feature4 + -0.04*feature5 + 0.02*feature6 + 0.40*feature7 + -0.44*feature8 + 0.24*feature9 + -0.11*feature10
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2. Principal Component Analysis (PCA)

2.3. implementation steps

Implementation steps (back to our toy-example on wine quality)

⇒ do the same with the 11 features: search for the principal components in a 11-dimensional space
NB: the maximum number of components is restricted by the number of features

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?
Q3: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?

Prediction accuracy of wine quality (categorical variable ⇒ classification task using kNN):
• using 11 original features ⇒ accuracy = 0.79
• using 6 first principal components ⇒ accuracy = 0.78

⇒ PCA can successfully reduce data dimensionality,
and achieve (almost) the same prediction accuracy with fewer features

⇒ how about using PCA on images?
→ Sentinel-2 exercise: a crop of 900 pixels (4-bands 15×15 pixels) can be reduced

fairly accurately to 32 points! (i.e., projection in a 32-dimensional space, first 32 pcs)
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3. Classification algorithms (perceptron + SVM)

1. Introduction

2. Principal Component Analysis (PCA)

3. Classification algorithms (perceptron + SVM)
1. Perceptron
2. Support Vector Machine (SVM)

4. Exercise
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3. Classification algorithms (perceptron + SVM)

Classification algorithms (perceptron + SVM)

Once features have been extracted, we can feed to the classifier! (recall last week lecture)

⇒ the classification algorithm needs to learn the decision boundary (i.e. surface separating the different
classes) in an N-dimensional feature space:

• probabilistic approaches:
- Logistic Regression ⇒ last week
- Softmax Regression ⇒ last week
- Naive Bayes

• non-probabilistic approaches:
- k-Nearest Neighbors (kNN) ⇒ last week
- Perceptron ⇒ today!

→ algorithm finding a hyperplane to separate classes, adjusting weights based on misclassified points
- Support Vector Machines (SVM) ⇒ today!

→ algorithm finding the optimal hyperplane that maximizes the margin between classes
- Random Forest ⇒ next lectures
- Convolutional Neural Networks (CNNs) ⇒ next lectures
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3. Classification algorithms (perceptron + SVM)

Classification algorithms (perceptron + SVM)

Choosing a classifier

• Logistic regression (& Softmax) (last week lecture)
⇒ probability-based linear classification method
⇒ advantage: simple, fast, interpretable
⇒ disadvantage: limited to linear decision boundaries

• k-Nearest Neighbor (kNN) (last week lecture)
⇒ label images by comparing them to (annotated) images from the training set
⇒ advantage: non-linear decision boundaries
⇒ disadvantage: classifier needs to keep all training data for future comparisons with the test data (classifying test

images is expensive as it requires comparison to all training images, inefficient with v. large datasets ≥GB)

• Support Vector Machines (this week lecture)
⇒ parametric linear classification method
⇒ advantage: once the parameters are learnt, training data can be discarded (classification of new images is fast:

simple matrix multiplication with learned weights, not an exhaustive comparison to every single training data)

• Convolutional Neural Networks (coming weeks)
⇒ CNNs map image pixels to classes, but the mapping is more complex and will contain more parameters
⇒ advantage: very powerful
⇒ disadvantage: needs LOTS of data!
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⇒ CNNs map image pixels to classes, but the mapping is more complex and will contain more parameters
⇒ advantage: very powerful
⇒ disadvantage: needs LOTS of data!
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3. Classification algorithms (perceptron + SVM)

3.1. Perceptron

Recall our toy example from last week: classify fruit images into either bananas or apples

input image
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Decision Boundary

Bananas

Apples
?

decision boundary

⇒ how is the decision boundary learned?
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3. Classification algorithms (perceptron + SVM)

3.1. Perceptron

Perceptron classifier

⇒ algorithm which classifies data based on linear decision boundary
NB: the original perceptron algorithm is a binary classifier (similar to logistic regression but non-probabilistic)

NB: in an N-dimensional feature space, the decision boundary is a hyperplane

⇒ perceptron:

ŷ = sign(wT x + b)

• ŷ ∈ {−1, 1}: predicted class → banana or apple

• x ∈ R2: feature vector → hue, elongation

• w ∈ R2: weight vector → needs to be learned
• b ∈ R: bias → needs to be learned
• sign: sign function returning the sign of a real number

-b/|w|

w
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3. Classification algorithms (perceptron + SVM)

3.1. Perceptron

Perceptron classifier

⇒ perceptron: ŷ = sign(wT x + b)

⇒ problem: multiple “good” boundaries can be found
⇒ need to find the optimal hyperplane

= boundary with maximal margins
= perceptron of maximal stability to new inputs

⇒ the Support Vector Machine (SVM) algorithm will find
the optimal hyperplane and learn the best weights w and bias
b to classify the data
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3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Support Vector Machine (SVM)

⇒ perceptron: ŷ = sign(wT x + b)

⇒ definitions:
• support vector points = points closest to the hyperplane

(only these points are contributing to the result, other points are not)
• margin = distance between hyperplane & support vector points

= 2
||w||

⇒ maximize margin:

max
w

2
||w ||

, subject to
{

wT xi + b ≥ 1 if yi = +1
wT xi + b ≤ 1 if yi = −1

which is equivalent to:

min
w

||w ||2, subject to yi (wT xi − b) ≥ 1
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3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Support Vector Machine (SVM)

⇒ How can outliers be handled?
⇒ is a hard-margin with 100% accuracy good?
⇒ no, allow small errors (soft-margin) to favour overall better

model
⇒ tolerate margin violation & favour large margin boundaries
⇒ optimization becomes:

min
w,ξi

||w ||2 + C
N∑
i

ξi , subject to yi (wT xi − b) ≥ 1 − ξi

where:


C regularization parameter

- small C ⇒ constraints easily ignored, large margin
- large C ⇒ towards hard-margin SVM

ξi slack variable for each data point
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3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Side note: reformulating optimization in terms of regularization and loss function (anticipating DL lectures)

Learning an SVM has been formulated as a constrained optimization problem over w and ξ:

min
w,ξi

||w ||2 + C
N∑
i

ξi subject to: yi(wT xi − b) ≥ 1 − ξi

The constraint yi(wT xi − b) ≥ 1 − ξi can be written more concisely as: yi f (xi) ≥ 1 − ξi

Together with ξi > 0, it is equivalent to: ξi = max(0, 1 − yi f (xi))

Hence the learning problem is equivalent to the unconstrained optimization problem over w :

min
w

||w ||2︸ ︷︷ ︸
regularization

+ C
N∑
i

max(0, 1 − yi f (xi))︸ ︷︷ ︸
loss function (Hinge loss)
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3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Support Vector Machine (SVM)

• What if the features xi are not linearly separable?

⇒ compute new features xi 7→ ϕ(x)
ϕ(x) is a feature map, mapping x to ϕ(x) where data is separable

⇒ solve for w in high dimensional feature space
⇒ data not lineary-seperable in original feature space become separable
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3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Kernel trick
The Representer Theorem states that the solution w can be written as a linear combination of the training data:

w =
∑N

j=1 αjyjx

The linear classifier can therefore be reformulated as:

f (x) = wT x + b

=
N∑
i

αiyi(xT
i x) + b

NB: this reformulation seems to have the disadvantage of a kNN classifier, i.e. requires the training data points xi .
However, many of the αi = 0: the ones that are non-zero define the support vector points xi

Using the feature map ϕ(x), it can be reformulated as:

f (x) =
N∑
i

αiyi(ϕ(xi)T ϕ(x)) + b

=
N∑
i

αiyik(xi , x) + b

where k(xi , x) is known as a Kernel
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3. Classification algorithms (perceptron + SVM)

3.2. Support Vector Machine (SVM)

Kernel trick
• Classifier can be learnt and applied without explicitly computing ϕ(x)
• All that is required is the kernel k(x , x ′)
• Multiple kernels exist:

• linear kernels: k(x , x ′) = xT x ′

→ very fast and easy to train, but very simple
• polynomial kernels: k(x , x ′) = (1 + xT x ′)d

→ contains all polynomial terms up to degree d
• gaussian kernels: k(x , x ′) = exp(−||x − x ′||2/2σ2) (RBF kernel)

→ kernel very powerful and most often used
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4. Exercise

1. Introduction

2. Principal Component Analysis (PCA)

3. Classification algorithms (perceptron + SVM)

4. Exercise
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4. Exercise

Exercise

EXERCISE:

classify land-use in satellite images (Sentinel-2) using PCA and SVM

PCA dimensionality reduction train SVM & apply land-use classification
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4. Exercise

Exercise

Part 1: apply PCA on satellite image crops

 

 

(20000, 4, 15, 15)

Vectorize dataset

(20000, 900)

Create covariance matrix
(mean covmat of all crops)

(900, 900)

1 crop = (1,900)

np.outer(crop, crop)

R

IR
B

G

20,000  x

1 crop = (4,15,15)

1 crop = (1,900)1 crop = (1,900)

Get eigenvectors
& eigenvalues

eigen values = (1,900)

np.linalg.eig(covmat)

eigen vectors = (900,900)

Reshape eigenvectors
⇒ principal components as images

np.linalg.eig(covmat) np.reshape(eig_vec,(900,4,15,15))

(900, 900) (900, 4, 15, 15)

PC 1

PC 32

..
.

Original dataset
⇒ take log & subtract mean

PC 1 PC 2 ...

PC 32PC 31...

 

 

 

(20000, 4, 15, 15)

Vectorize dataset

(20000, 900)

Create covariance matrix
(mean covmat of all crops)

(900, 900)

1 crop = (1,900)

np.outer(crop, crop)

R

IR
B

G

20,000  x

1 crop = (4,15,15)

1 crop = (1,900)1 crop = (1,900)

Get eigenvectors
& eigenvalues

eigen values = (1,900)

np.linalg.eig(covmat)

eigen vectors = (900,900)

Reshape eigenvectors
⇒ principal components as images

np.linalg.eig(covmat) np.reshape(eig_vec,(900,4,15,15))

(900, 900) (900, 4, 15, 15)

PC 1

PC 32

..
.

Compute features
⇒ project each crop on first 32 pc

for i in range(20000):   #loop crops

   for j in range(32):   #loop pcs

      features[i,j] = np.dot(crop[i,:::], pc[j,:::])

                    = (900,1) @ (1,900)

                    = (scalar)

 

principal comp.
(900,4,15,15)

crops
(20000,900)

features
(20000,32)

1 crop projected on 32 pc
= (1,32)

Reconstruct crops 
⇒ reconstruct crop from its 32 features & 32 first pcs

Reconstruction crop #1:
 

reconstruction = mean_crops   #(4, 15, 15)

for i in range(32):           #loop crop features/pcs

   reconstruction += features[0,i] * pc[i,:::]

                    = (scalar) * (4,15,15)

                    = (4,5,15)

features
(20000,32)

features of crop #1 = (1,32)

principal comp.
(900,4,15,15)

1 reconstructed crop 
= (4,15,15)

original crop reconstructed crop

Original dataset
⇒ take log & subtract mean

⇒ a crop of 900 pixels (4×15×15) can be reduced fairly accurately to 32 points,
i.e., a projection in a 32-dimensional space (first 32 pcs)

⇒ this dimensionality-reduction of the dataset allows us to feed it to a classifying algorithm
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⇒ this dimensionality-reduction of the dataset allows us to feed it to a classifying algorithm
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i.e., a projection in a 32-dimensional space (first 32 pcs)

⇒ this dimensionality-reduction of the dataset allows us to feed it to a classifying algorithm
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⇒ this dimensionality-reduction of the dataset allows us to feed it to a classifying algorithm
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4. Exercise

Exercise

Part 2: train SVM on principal components and apply to classify full image

PCA dimensionality reduction land-use classification
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