UNAM - Posgrado en Ciencias de la Tierra - Semestre 2025-1

Lecture 11

Deep Learning 01
Shallow Neural Networks

2024-11-06
Sébastien Valade

\\\\‘lm\\\kﬂ NACIONAL AUTONOMA § M[l(/[y
<L TS

"

VNIVER4DAD NACJONAL
AVFNMA DE
MEXICO

1/75

1. Introduction

1. Introduction

2/75

1. Introduction
Introduction
From classical learning to modern learning

Classical Machine Learning

Data

(Image)

’ Feature extraction ‘

Feature vector
(Classifier input)

Classifier | Learned
(Magic) parameters

Output
(Classification result)

3/75

1. Introduction
Introduction
From classical learning to modern learning

Classical Machine Learning Modern Machine Learning

Data Data
(Image) (Image)
’ Feature extraction ‘ ’ Fe\a\tgre extrayfl/on ‘

Feature vector ature ve
(Classifier input) (Classifier input)

Classifier | Learned Classifier | Learned
(Magic) parameters (Magic) parameters

Output Output
(Classification result) (Classification result)

4/75

1. Introduction

Introduction

Last week: Random Forests (Ensemble Method) - ML4

DBSCAN

Naive Bayes
K-Means Agglomerative
99 i

swM
Decision Trees

Classification

Mean-shift

Fuzzy C-Means Logistic Regression

Euclat
Linear Regression

Apriors
Polynomial

Regression

FP-Growth
Ridge/Lasso
gression

DIMENSION REDUCTION
(generalization

S oA
PCA Lsa SV

Random Forest

MACHINE
LEARNING

ENSEMBLE
ME THOD:

AdaBoost LightGBM
CatBoost

ML4

REINFORCEMENT
LEARNING

Genetic Q-Learning
Algorithm

XGBoost

SARSA Deep Qrstwork
ASE oav)

NEURAL
NETS AND
DEEP LEARNING

Récurrent
Neurol Networks
(RNN)

GRU

Denn

Sea2seq

source

https://noeliagorod.com/2019/05/21/machine-learning-for-everyone-in-simple-words-with-real-world-examples-yes-again/

1. Introduction

Introduction

Last week: Random Forests (Ensemble Method) - ML4
This week: Neural Networks (Part-1: shallow nets) - DL1

DBSCAN

Naive Bayes
K-Means Agglomerative
Mean-shift oo _A9gemeratve Kenn

swM
Decision Trees

Classification

FezzyiCtmans Logistic Regression

Euclat
Linear Regression
Apriori

FP-Growth

DIMENSION REDUCTION
(generalization

S oA
PCA Lsa SV

Polynomial
egression

Ridge/Lasso
Regression

CLASSICAL
LEARNING

Random Forest

Genetic Q-Learning in
Algorithm Boosting)
SARSA Deep Qrstwork AdaBoost
AsC oav)

LightGBM
CatBoost

NEURAL
NETS AND
DEEP LEARNING,

Denn

source

6/75

https://noeliagorod.com/2019/05/21/machine-learning-for-everyone-in-simple-words-with-real-world-examples-yes-again/

1. Introduction

Introduction

Brief history of Neural Networks

Al Golden Age Al Winter Al Golden Age Al Winter Al Golden Age

043 958 ¢ 986 998 012
Artificial Neuron AN Perceptron XOR problem Multi-Layer Convolutional AlexNet
McCulloch-Pitts Rosenblatt Minsky-Papert Perceptron MLP Neural Networks Krizhevsky et al.
(backpropagation) |CNN o
1959 Rumelhart-Hinton- Lecun 2014 GAN
Adaptive Williams) 2017 Transformer
Linear Neuron 1995 2022 ChatGPT
ADALINE SVM
Widrow-Hoff Vapnik-Cortes ‘

1950

- Artificial Neurons 69 - XOR problem - Support Vector Machines (SVM) - AlexNet
C=AANDB C=AORB C=ANOTB Q [j ﬁ

55 &b &b Lnie

- Perceptron & Adaline - Multi-Layer Perceptrons (MLP) - Convolutional Neural Networks (CNN)

\
e
: § o A G \\\\

| 7/75

hidden layers

®—’-” joput @

OO0
TOOD 0

e~
(oX©]
(oqexe]

2. Perceptron

8/75

2. Perceptron

2.1. definition

Recall our toy example from lecture 9: classify fruit images into either bananas or apples

Input image feature space decision boundary

v elongated - ° : elongated —
=0 =
To ®o 0% 32
o
E‘g ,5'3 Bananas
3 & o0 > o
NS e o NS
=5] ° =3
()
o ©
()
e © o L e o
spherical | g ® ° e @ o ® spherical -
>
> T T >
‘ ‘ L green yellow red
green yellow red h f
ue (feature 1
hue (feature 1) ()

9/75

2. Perceptron
2.1. definition

Perceptron classifier

= algorithm which classifies data based on linear decision boundary

= perceptron:

9 = sign(w’x + b)

® §c{—1,1}: predicted class — banana or apple
® x € R?: feature matrix (n, 2) — [hue, elongation]
® w ¢ R?: weight vector (2,) — needs to be learned

® bh € R: bias — needs to be learned

® sign: sign function returning the sign of a real number

ojwl| @ ® o@® °

10/75

https://en.wikipedia.org/wiki/Sign_function

2. Perceptron
2.1. definition

Perceptron classifier

= influence of weight vector w & bias b on decision boundary:
® weight vector w: determines the normal vector to the decision boundary

® bias b: shifts the decision boundary in the direction of the weight vector
(b > 0 shifts the boundary in the negative direction of the weight vector, and vice versa)

Effect of weights (w) Effect of bias (b)

w=[4 1], b=-4

w=[5 1], b=0 =
— w=[31], b=0 — w=[41], b=0
— w=[21], b=0 — w=[41], b=4

=== -b/liwi|

----- weight vector w

11/75

2. Perceptron
2.1. definition

Perceptron

= representation as an artificial neuron called the threshold logic unit (TLU), which:

1. computes a linear function of the input vectors x; and associated weights w;, plus a bias term b:
z:woxo+w1x1+b:wa+b

2. applies a step function o, typically the modified sign function

41 if z>0
teP(2) =30 i z<0

12/75

2. Perceptron
2.1. definition
Perceptron

= representation as an artificial neuron called the threshold logic unit (TLU), which:

1. computes a linear function of the input vectors x; and associated weights w;, plus a bias term b:
z:woxo+w1x1+b:wa+b
2. applies a step function o, typically the modified sign function

41 if z>0
teP(2) =30 i z<0

input vectors

step
[x0p, X0 X0,]" sum function

Z =YW z=0(z)

=o(w'x+b)

<>

output
class

A~ =0 W;X; + b
T}—v 2
o ()9/ x00 x1o

X01 X11
b = bias —c (Wo W1)~ .] +b

weights vector
w = [wo, wq]

x0, x1,

13/75

2. Perceptron
2.1. definition

Perceptron

= another representation is with the weight vector W and augmented input vector X:
— the bias term b is learned as a weight w, = b, and the input vector x is augmented with a vector of values x, =1

inputs x inputs X = [x,, X4, ..., 1]
Wo sum 360, output Wo_ TLU output
~ ~
@D O 7
Pow, Pop

@/ b = bias ®/weights vector w

weights vector w W = [wg, Wy, ..., b]

o(w’ x + b) y=oW'x

n n
o E wix; + b o E Wi
i=1 i=1

where: W, = b, X, = vector of 1

~

y

14/75

2. Perceptron
2.1. definition
Perceptron

= a perceptron can be composed of one or more TLUs organized in a single layer, where every TLU is
connected to every input: such a layer is called a fully connected layer, a.k.a. a dense layer

= when the output layer contains several TLUs, the perceptron becomes a multilabel classifier

15/75

2. Perceptron
2.1. definition
Perceptron

= a perceptron can be composed of one or more TLUs organized in a single layer, where every TLU is
connected to every input: such a layer is called a fully connected layer, a.k.a. a dense layer

= when the output layer contains several TLUs, the perceptron becomes a multilabel classifier

= the perceptron is one of the simplest Artificial Neural Network (ANN) architecture

16 /75

2. Perceptron
2.1. definition
Nota Bene:

® when TLUs are organized in multiple layers, the network is called a multilayer perceptron (MLP)

® in MLPs, the step function is often called the activation function, which can take various forms (e.g.,
step, sigmoid, ReLU, Tanh, etc.)

17/75

2. Perceptron
2.1. definition
Nota Bene:

® when TLUs are organized in multiple layers, the network is called a multilayer perceptron (MLP)

® in MLPs, the step function is often called the activation function, which can take various forms (e.g.,
step, sigmoid, ReLU, Tanh, etc.)

= how is the perceptron trained?
i.e., how are the weights w and bias b learned?

18/75

2. Perceptron
2.2. learning algorithm

Perceptron learning algorithm

= there is no analytical solution to the perceptron learning problem

= iterative algorithm to learn the weight vector w and bias b that minimize the classification error:
initialize W with random values
for each training samples X;:
predict y; = sign(W’%;)
update W if §; # y;:
W=w+n-(yi—¥) % where 7 is the learning rate
where w = W[: -1], b = W[-1]

= |llustration of the convergence of the perceptron learning algorithm:

dataset w=[2.0, 1.0], b=0.0 w=[1.1,0.2], b=-0.1 w=[0.1,-0.2], b=0.3 w=[-0.1,-0.1], b=0.3
6A
o ©
° °© o
° °s .
44 e °
0%e,
)
°
2
° °
06 ®

2. Perceptron
2.2. learning algorithm

Perceptron learning algorithm

= there is no analytical solution to the perceptron learning problem
= iterative algorithm to learn the weight vector w and bias b that minimize the classification error:

initialize W with random values
for each training samples X;:
predict y; = sign(W’%;)

W=+ (yi — 9i) % h is the learni .
u| VWV ‘eﬂl;—n (i — i) % <where 7 is the learning rate where does this come from?

=wW[: -1], =W—1]

= |llustration of the convergence of the perceptron learning algorithm:

dataset w=[2.0, 1.0], b=0.0 w=[1.1,0.2], b=-0.1 w=[0.1,-0.2], b=0.3 w=[-0.1,-0.1], b=0.3

2. Perceptron
2.3. gradient descent

Gradient descent of the Loss function (for the perceptron)

= learning the weights W means modifying them such that predicted labels y get closer to true labels y

21/75

2. Perceptron
2.3. gradient descent

Gradient descent of the Loss function (for the perceptron)

= learning the weights W means modifying them such that predicted labels y get closer to true labels y

= loss function £ = measure of the difference between predicted and true labels

L2 loss = mean squared error (MSE) = | L 3™ (§; — y;)?

22/75

2. Perceptron

2.3. gradient descent

Gradient descent of the Loss function (for the perceptron)
= learning the weights W means modifying them such that predicted labels y get closer to true labels y

= loss function £ = measure of the difference between predicted and true labels

L2 loss = mean squared error (MSE) = | L 3™ (§; — y;)?

= gradient descent: starting from a random point on the function £(w), move in the direction of the
steepest descending gradient with a step size 7 (learning rate)

update rule: where Vw = % (for simplicity W is here annotated w)

—e— Gradient Descent Path

23/75

2. Perceptron
2.3. gradient descent

Gradient descent of the Loss function

. i dL
= computing the derivative =:

1
L==(y—9)?
S =9)
¢ d (1. 2}
dw dw {2(y y)
d d di
=2.2-(y=9)- —(y—9)* ! applying the power rule, where — (u") =n-u""*. o
2 dw dw dw

d
=(y—9)- W(y — w - x) substituting y = w - x

d d
=(y—y)-——(w-x) considering R 0 since y is constant
d d
w w
d(w - x)
dw

Vw=—(y —§) x considering that = X, since x is treated as a constant with respect to w

= the weight update rule for gradient descent becomes: |w =w —nVw=w+n-(y —) - x ‘

24/75

2. Perceptron
2.3. gradient descent

Reminder: common derivation rules

Rule Function Derivative
Constant Rule f(x) =c f'(x) =0
Power Rule f(x) = x" f(x)=n-x""1
Generalized Power Rule f(x) = u(x)" f'(x)=n- u(>()"71 <’ (x)

Sum Rule
Difference Rule
Product Rule

Quotient Rule

Chain Rule
Exponential Rule
Exponential with Constant Base
Logarithmic Rule
Sine Function
Cosine Function
Tangent Function

f(x) = u(x) + v(x)
f(x) = u(x) — v(x)

f(x) = u(x)(' v(x)
Fx) = 24
f(x) = u(v(x))
f(x) = €
f(x) = a
f(x) = In(x)
f(x) = sin(x)
f(x) = cos(x)
f(x) = tan(x)

f/(x) = u'(x) + v/ (x)
f/(x) = u'(x) — v/(x)

f/(x) = u’(x) - v(x) + u(x) - v/
() = V0=) v/ ()

V()12
1 (x) = v’ (v(x)) - v/(x)
f'(x) =
f’(x) = a - In(a)
flx)=1
f’(x) = cos(x)
f’(x) = — sin(x) .

F/(X) - secz(x) - cos?(x)

()

25/75

2. Perceptron
2.4. limitations

Limitation of the perceptron classifier

= the perceptron is a linear classifier, so it cannot deal with even trivial non-linear classifications

EX: the XOR problem (exclusive OR)

AND

26/75

2. Perceptron
2.4. limitations

Limitation of the perceptron classifier

= the perceptron is a linear classifier, so it cannot deal with even trivial non-linear classifications

EX: the XOR problem (exclusive OR)

AND

= the limitations of perceptrons can be eliminated by stacking multiple perceptrons into several layers:

= the resulting ANN is called a multilayer perceptron (MLP)

27/75

3. Multilayer perceptron (MLP)

3. Multilayer perceptron (MLP)

28/75

3. Multilayer perceptron (MLP)

3.1. from single to multilayer perceptron

From single to multilayer perceptron

output layer with 1 neuron

()

e .

@/

29/75

3. Multilayer perceptron (MLP)

3.1. from single to multilayer perceptron

From single to multilayer perceptron

output layer with 2 neurons

30/75

3. Multilayer perceptron (MLP)

3.1. from single to multilayer perceptron

From single to multilayer perceptron

1 hidden layer with 2 neurons + output layer with 1 neuron (= 2 fully connected layers)

()
@ O
@

31/75

3. Multilayer perceptron (MLP)

3.1. from single to multilayer perceptron

From single to multilayer perceptron

3 hidden layers (m neurons) + output layer (2 neurons) (= 4 fully connected layers)

——
%y2

32/75

3. Multilayer perceptron (MLP)

3.1. from single to multilayer perceptron

From single to multilayer perceptron

= a multilayer perceptron (MLP) is also called a feedforward neural network, because information flows
from input to output

= a MLP consists of a concatenation of multiple fully connected (dense) layers, i.e. each neuron in one
layer is connected to every neuron in the next layer

= a MLP is a concatenation of multiple functions, the entire network can be written out as a long equation:

5} _ f-(out)(Wout . f-Z(WZ . f-l(Wl . X)))

Forward-pass calculations of a 3-layer neural network

f = lambda x: 1.0 / (1.0 + np.exp(-x)) # activation function (sigmoid)
x = np.random.randn(3, 1) # input vector (3z1)

@4' Y hi = f(np.dot(wl, x) + bl) # first hidden layer activations

h2 = f(np.dot(w2, hl) + b2) # second hidden layer activations

out = np.dot(w3, h2) + b3 # output neuron

33/75

3. Multilayer perceptron (MLP)

3.1. from single to multilayer perceptron

From single to multilayer perceptron

=- 1 hidden layer to solve the XOR problem (example taken from book “Geron 2022")

=312

®
— 1 —>
PO
@

— 1 —

-112

EX: classification of datapoint (x,=0, x,=1)
3/2
ny =sign(0x1 + 1x1 - 3/2)

= sign(-112)
ign(0x-1 + 1x1 - 1/2)

@7 1 — 3; ian(1/2)
>< @ e
Oi B
. class label 1

N = sign(0x1 + 1x1 - 1/2)

=00

= 172,
1/2 = sign(1/2) A class label 0 34/75

3. Multilayer perceptron (MLP)
3.1. from single to multilayer perceptron

Effects of the number of hidden layers?

= increasing the number of hidden layers allows the network to learn more complex functions

= no need to worry about feature engineering, the hidden layer of the network learn the features!

hidden layer = 1 hidden layers = 2 hidden layers = 3 hidden layers = 20

dataset

35/75

3. Multilayer perceptron (MLP)

3.1. from single to multilayer perceptron

Effects of the number of nodes in layers?

= number of nodes in each layer:

® input layer: number determined by the data dimensionality

® EX: previous examples xi,xp = 2 input nodes
® EX: MNIST handwritten digits dataset = 28x28 pixel images = 784 input nodes

36/75

3. Multilayer perceptron (MLP)

3.1. from single to multilayer perceptron

Effects of the number of nodes in layers?

= number of nodes in each layer:

® input layer: number determined by the data dimensionality

® EX: previous examples xi,xp = 2 input nodes
® EX: MNIST handwritten digits dataset = 28x28 pixel images = 784 input nodes

® output layer: number determined by the number of classes to classify

® EX: binary classification = 1 output node
® EX: MNIST handwritten digits dataset = 10 output nodes

37/75

3. Multilayer perceptron (MLP)

3.1. from single to multilayer perceptron

Effects of the number of nodes in layers?

= number of nodes in each layer:

® input layer: number determined by the data dimensionality

® EX: previous examples xi,xp = 2 input nodes
® EX: MNIST handwritten digits dataset = 28x28 pixel images = 784 input nodes

® output layer: number determined by the number of classes to classify

® EX: binary classification = 1 output node
® EX: MNIST handwritten digits dataset = 10 output nodes

® hidden layer: number determined by the complexity of the function to learn

® EX: XOR problem = 2 hidden nodes is enough
® EX: MNIST handwritten digits dataset = more nodes & hidden layers can capture more subtleties and
improve performance

Nota Bene: higher network dimensionality (more nodes & layers) < more computation and prone to
overfitting!

38/75

3. Multilayer perceptron (MLP)

3.1. from single to multilayer perceptron

Effects of the number of nodes in layers?

= classification of the MNIST dataset with a MLP

ixel 1—Q 7\ 7\‘
pixel Q) S O
ixel 3—Q . ~
.‘3?:2. 41— QNN () O
ixel 5—Q Seo) -
pivel 6— QNN O O
pixel 7—Q : —
ixel 8— Q))
;;::Ig—-O S O : O
eorrimes. ;¢ @) O
ixel 12— O
pixel 13— O @=: O
ixel 14— O
pixel 15— @7 D
pixel 16— O N -
pixel 17— 77 =) IS O
pixel 18— O "2 - -
ixel 19—~~~
i me O O
pixel 784 — 5 t,) >

39/75

https://en.wikipedia.org/wiki/MNIST_database

3. Multilayer perceptron (MLP)

3.1. from single to multilayer perceptron

Effects of the number of nodes in layers?

= classification of the MNIST dataset with a MLP

ixel {—Q N ~
s;:;zao % O
ixel 3— QS ~
.‘3?:2. 4— QN () O
ixel §— QRN o - ,
pixel §— QNN e O
pixel 7—Q N v
ixel §— Q) SN ‘
;;::IQ—-O 0% O : O
ol @) O
ixel 12— O B

g:::nsﬂo : gi = O
ixel 14— O =0

bixel 19— 7% @7 D
pixel 16— O 207 3 - _
pixel 13— CBZ4 22550 () S, ()
pixel 18— O 875~ - -

ixel 19— 1~~~

Pt 24— O O

pixel 784 — 5 t,) >
input layer

28x28 pixels = 784 neurons

40/75

https://en.wikipedia.org/wiki/MNIST_database

3. Multilayer perceptron (MLP)

3.1. from single to multilayer perceptron

Effects of the number of nodes in layers?

= classification of the MNIST dataset with a MLP

pixel 1—Q LN
pixel 2—Q | C/
pixel 3—Q |
pixel 4 —Q g O
pixel 5—Q | P
pixel 6—Q O
pixel 7—Q H
pixel 8—Q | O
pixel 9—Q ; -
pixel 10— QO | S
pixel 11— O) { O
pixel 12— O |
pixel 13— O ; C)
pixel 14— O
pixel 15— O § ()
pixel 16— O | .
pixel 17— O §
pixel 18— | CJ
pixel 19— O
pixel 20— O § O
pixel 784~-(.§ |)
input layer output layer
28x28 pixels = 784 neurons 10 digits = 10 neurons

softmax layer

41/75

https://en.wikipedia.org/wiki/MNIST_database

3. Multilayer perceptron (MLP)

3.1. from single to multilayer perceptron

Effects of the number of nodes in layers?

= classification of the MNIST dataset with a MLP

pixel 1—Q
pixel 2—Q
pixel 3—Q
pixel 4 —Q
pixel 5—Q
pixel 6—Q
pixel 7—Q
pixel 8—Q
pixel 9—Q
pixel 10— QO
pixel 11—QO
pixel 12— O
pixel 13— O =
pixel 14— O
pixel 18— O
pixel 16— O
pixel 17— O
pixel 18— O
pixel 19— O
pixel 20— C.)

x
LLLLAIE 1A 11 AL AA TR TENOOALT ORISR

pixel 784 — (.)

(CCCCCO00DDO)

input layer hidden layer* output layer
28x28 pixels = 784 neurons 10 digits = 10 neurons

) . softmax layer
* hidden layer: would require more neurons to have proper performance

42/75

https://en.wikipedia.org/wiki/MNIST_database

3. Multilayer perceptron (MLP)

3.2. activation functions

Types of activation functions

® Sigmoid / Logistic

f(X),' = 1+:—Xi

® ReLU (Rectified Linear Unit)
f(x); = max(x;,0)

f(x); = tanh(x;) = =

eXite i

0.5

-0.5

relu

sigmoid

tanh

43/75

3. Multilayer perceptron (MLP)

3.3. backpropagation

Using backpropagation to learn MLP

= recall that the feedforward operations of a MLP is a concatenation of multiple functions:
y="f(ws-h(w-A(wi-x+b1)))

nput hidden hidden output
layer 1 layer 2 layer

el e B

4475

3. Multilayer perceptron (MLP)
3.3. backpropagation

Using backpropagation to learn MLP

= recall that the feedforward operations of a MLP is a concatenation of multiple functions:
y="f(ws-h(w-A(wi-x+b1)))

nput hidden hidden output
layer 1 layer 2 layer

el e B

= to learn the MLP y = furp(x;0) means that the MLP parameters 6 = {f, w, b} need to be optimized to
best fit the training dataset {x, y}, where:

® f = node activation functions (some activation functions have parameters, e.g. the Leaky ReLU f(x) = max(ax, x))
® w = node weights
® b = node biases

45/75

3. Multilayer perceptron (MLP)

3.3. backpropagation

Using backpropagation to learn MLP

= recall that the feedforward operations of a MLP is a concatenation of multiple functions:
y="f(ws-h(w-A(wi-x+b1)))

nput hidden hidden output
layer 1 layer 2 layer

el e B

= to learn the MLP y = furp(x;0) means that the MLP parameters 6 = {f, w, b} need to be optimized to
best fit the training dataset {x, y}, where:

® f = node activation functions (some activation functions have parameters, e.g. the Leaky ReLU f(x) = max(ax, x))
® w = node weights
® b = node biases
= to do so we need to compute the partial derivatives of the loss function £ with respect to 6:
oL [06 oL oL 8[,]
89 - 8W37 aWQ7 8W17 81)

46 /75

3. Multilayer perceptron (MLP)
3.3. backpropagation

Using backpropagation to learn MLP

oL 0L oL 6[1].

Let's compute the partial derivatives [B—M, Dug) Dyt OF

1. compute %:
= the partial derivative 57‘/:3 describes how ws will affect the Loss function L
loss
X o—Wyq. @b Wy L(y,y)

A

f)i describes how wj affects L
ows

47/75

3. Multilayer perceptron (MLP)
3.3. backpropagation

Using backpropagation to learn MLP

' . P oL oL oL dL].
Let's compute the partial derivatives [B—M, Du D %].

1. compute aT/'
= the partial derivative d—é describes how ws will affect the Loss function L

loss
' PWI*WZ*

y L(y, V)

f)—ﬁ describes how w; affects L

ows
s)L Of3)&
= according to the chain rule: a—£ = j,f o
loss
X o—W, Wz‘ L(y, Y)
AR iR, K
b, ‘, IR e
depend;::n depends on de;;n -s—on
oL Oas Of oL
dws Ows Oas of

48/75

3. Multilayer perceptron (MLP)
3.3. backpropagation

Using backpropagation to learn MLP

' . P oL oL oL dL].
Let's compute the partial derivatives [B—M, Du D %].

1. compute g—é (continued):

= we can compute aa—ﬁ = 9L 95 0% a5 follows:
w3 Ofz Daz Ows

0L OL 0f; a3

Ows Of; Das Ows

2

N

oc

considering £ L2 loss (y y)
Oy

833
= (y — }7)&(1 - fé)ai considering f3 is a sigmoid function whose derivative is f
w3

= (y — }A/)fé(l — f3)f2 considering a3 w3 - fp

y=9)

F)(1 = £(x))

49/75

3. Multilayer perceptron (MLP)

3.3. backpropagation

Using backpropagation to learn MLP

Let's compute the partial derivatives [3763’ , %, %]:
1. already computed: g—é =(y—9)h(1-R)f
2. compute: , 0851’ %% by re-using already computed derivates (backpropagate!)

loss

(y,) 8L _ OL Of; das
TVIG - 0f3 Daz Ows

0L 90fs

~ 0f; Das

oL 0L 0f

loss m B ? 0as

L9 oL _ o on

. ob Of; Oa3

50/75

3. Multilayer perceptron (MLP)
3.3. backpropagation

Summary of the procedure to train the MLP

= for each training sample {x;, yi }:

1. Predict

® forwyard pass: compute the output of the network

Vi = furp(xi; 0)

® compute Loss L: compare the predicted output with the true output

2. Update weights

£ = loss(9i, i)

® backpropagation: compute the gradients of the loss function with respect to the network parameters 6

® update weights:

oL B oL 9L 9L oL
20 | 0w’ Ow, Ow’ 8b
use the gradients to update the weights of the network
oL

w3 = w3 — ’I]VW}; where Vw3

ows

oL

wy = wp — HVWQ where Vwy =

Owy

oL

wip = wp — anl where Vw;
ow
oL

b=b— an where Vb —
ob 51/75

4. Application

4. Application

52/75

4. Application
4.1. MLP playground

MLP playground

= build your own MLP using the interactive web platform developped by Google:
playground.tensorflow.org

= see the effects of training in real time!

53/75

http://playground.tensorflow.org/

4. Application
Application

Several frameworks exist:

® Tensor Flow TensorFlow

® developped by Google

54/75

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
http://torch.ch/
https://www.mindspore.cn/en
http://caffe.berkeleyvision.org/
https://mxnet.apache.org/
https://en.wikipedia.org/wiki/Theano_(software)

4. Application
Application

Several frameworks exist:

® Tensor Flow TensorFlow

® developped by Google
® includes the high-level API Keras library (TF version >2) Keras

55/75

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
http://torch.ch/
https://www.mindspore.cn/en
http://caffe.berkeleyvision.org/
https://mxnet.apache.org/
https://en.wikipedia.org/wiki/Theano_(software)

4. Application
Application

Several frameworks exist:

e Tensor Flow TensorFlow
® developped by Google
® includes the high-level API Keras library (TF version >2) Keras
e PyTorch O PyTorch

® developed by Facebook

56 /75

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
http://torch.ch/
https://www.mindspore.cn/en
http://caffe.berkeleyvision.org/
https://mxnet.apache.org/
https://en.wikipedia.org/wiki/Theano_(software)

4. Application
Application

Several frameworks exist:

e Tensor Flow TensorFlow
® developped by Google
® includes the high-level API Keras library (TF version >2) Keras
e PyTorch O PyTorch

® developed by Facebook
® based on the Torch framework (Lua) torch

57/75

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
http://torch.ch/
https://www.mindspore.cn/en
http://caffe.berkeleyvision.org/
https://mxnet.apache.org/
https://en.wikipedia.org/wiki/Theano_(software)

4. Application
Application

Several frameworks exist:

e Tensor Flow TensorFlow
® developped by Google
® includes the high-level API Keras library (TF version >2) Keras
e PyTorch O PyTorch
® developed by Facebook
® based on the Torch framework (Lua) torch
® MindSpore, Caffe, MXNet, Theano, etc. AT Caffe @Xnet theano

58 /75

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
http://torch.ch/
https://www.mindspore.cn/en
http://caffe.berkeleyvision.org/
https://mxnet.apache.org/
https://en.wikipedia.org/wiki/Theano_(software)

4. Application

Application

Popularity of the main frameworks (from Kaggle 20221)

Most popular consolidated machine learning frameworks (2018-2022)

80-
%)
o 60-
@
b=
€
&
a
£ 40-
s
B year
2018
20- 2019
B 2020
W 2021
2022
0- 0 0 g g
ry pe 7 5
Py, > 9%(,&_? sy, -, kg, i
¥ &y 9,
gy, tr, b%rc ", i
e o, 0"’4‘)
"o g,
o5y

12022 - Kaggle Data Science & ML Survey (link)
59/75

https://www.kaggle.com/kaggle-survey-2022

4. Application
Application

Installing Tensor Flow with Anaconda (instructions):
= we will install Tensor Flow in a "conda environment”

1. Create environment and install Tensor Flow package & dependencies inside

$ conda env list # optional: list existing environments
$ conda create -n tf tensorflow # create environment called "tf" & install CPU-only TensorFlow

60/75

https://www.tensorflow.org/
https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/

4. Application
Application

Installing Tensor Flow with Anaconda (instructions):
= we will install Tensor Flow in a "conda environment”

1. Create environment and install Tensor Flow package & dependencies inside

$ conda env list # optional: list existing environments
$ conda create -n tf tensorflow # create environment called "tf" & install CPU-only TensorFlow

2. Activate the created environment

$ conda activate tf

61/75

https://www.tensorflow.org/
https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/

4. Application
Application

Installing Tensor Flow with Anaconda (instructions):
= we will install Tensor Flow in a "conda environment”

1. Create environment and install Tensor Flow package & dependencies inside

$ conda env list # optional: list existing environments
$ conda create -n tf tensorflow # create environment called "tf" & install CPU-only TensorFlow

2. Activate the created environment

$ conda activate tf

3. Install additional packages in the active environment

$ conda install jupyter matplotlib pandas scikit-learn

62/75

https://www.tensorflow.org/
https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/

4. Application
Application

Installing Tensor Flow with Anaconda (instructions):
= we will install Tensor Flow in a "conda environment”

1. Create environment and install Tensor Flow package & dependencies inside

$ conda env list # optional: list existing environments
$ conda create -n tf tensorflow # create environment called "tf" & install CPU-only TensorFlow

2. Activate the created environment

$ conda activate tf

3. Install additional packages in the active environment

$ conda install jupyter matplotlib pandas scikit-learn

4. Launch Jupyter from the active environment, import Tensor Flow, and you're good to go!

$ jupyter notebook

Create a new notebook with Python 3 kernel
import tensorflow as tf

63/75

https://www.tensorflow.org/
https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/

4. Application

Application

Nota Bene

Two distinct versions of TF exist, depending on whether it should run on CPU (Central Processing Unit), or GPU (Graphics Processing Unit)

= CPU-only TensorFlow (recommended for beginners)

$ conda create -n tf tensorflow

= GPU TensorFlow

$ conda create -n tf-gpu tensorflow-gpu

= GPU will be much faster, but more expensive, and trickier to setup (requires CUDA) J

64/75

4. Application
4.4. From ML (sklearn) to DL (tensorflow)

Toy example: linear classification task using scikit-learn and tensor flow

A o
Z
perceptron: | y = sign(w”x + b) (] [&__"Q
® y e {-1,1}: predicted class — banana or apple ® ® y=1 ,
® x € R2: feature matrix (n, 2) — [hue, elongation] ()
® w c R?: “weight vector” (2,) — needs to be learned o @ y=-1
® b e R: “bias” — needs to be learned ()
® sign: sign function returning the sign of a real number) ®
L
e®%eo
X,

65/75

https://en.wikipedia.org/wiki/Sign_function

4. Application

4.4. From ML (sklearn) to DL (tensorflow)

Toy example: linear classification task using scikit-learn and tensor flow

perceptron: | y = sign(w”x + b)

y € {—1,1}: predicted class — banana or apple
x € R?: feature matrix (n, 2) — [hue, elongation]
w € R2: “weight vector” (2,) — needs to be learned

b € R: “bias” — needs to be learned

sign: sign function returning the sign of a real number

b X1 X7 cemeeeeeeees inputs (features)

Y s output: y = sign(w'x+b) € {-1, 1}

-- step function: sign(z)
-- weighted sum: z = w'x+b = wyx; + wyx, + b

.............. weights w & bias b (to be learned)

66 /75

https://en.wikipedia.org/wiki/Sign_function

4. Application

4.4. From ML (sklearn) to DL (tensorflow)

Solution with Scikit-Learn: Perceptron classifier

from sklearn import datasets
from sklearn import linear_model

from sklearn.utils import shuffle

from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy.sc

Load data
iris = datasets.load_iris()

X = iris.datal:, (2, 3)) # petal length, petal width
y = (iris.target == 0).astype(*int') # Iris setosa?

Preprocess data
X, y = shuffle(X, y, randon_state=0)
scaler = StandardScaler()

X = scaler. fit_transforn(X)

X_train = X[:75]

y_test = y(75:]

Select model
€1f = linear_model.Perceptron()

Train model
clf. fit(X_train, y.train)

print(‘ueights:', clf.coef)
print(‘bias:', clf.intercept_)
Evaluate

y-pred = clf predict(X_train)
accuracy_score(y_train, y_pred)

Predict from model
y-pred = clf .predict([(2, 0.51))

Plot data + linear classifier
s scatter A L:,01, 305,11,
plt.scatter (X_crain:,0], X u.m[11, cmy_train)
plt.scatter(X_test[: s -y_test, alpha=.25)

weights = clf .coof_(0]

bias = clf.intercept_

slope = -weights(0] / weights(1]

yintercept = -bias / weights (1]
- np.linspace(-2,2)

-y = sloper.x + yintercept

Plt.plot(_x, -y, '-r')

1.1 Load data

1.2 Preprocess data
shuffle
scale
split into train/test

2. Select model

3. Train model

loss (Prrm’}

tralmng

updule W& b

b

- step function: sign(z)
- weighted sum wix+b = w;x

é

Wl Wy - weights w & bias b (to be
X1 Xz - inputs (features)

+wyx, + b

learned)

67/75

4. Application

4.4. From ML (sklearn) to DL (tensorflow)

Solution with Scikit-Learn: Perceptron classifier

from sklearn import datasets
from sklearn import linear_model

from sklearn.utils import shuffle

from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy.sc

Load data
iris = datasets.load_iris()

X = iris.datal:, (2, 3)) # petal length, petal width
y = (iris.target == 0).astype(*int') # Iris setosa?

Propmocess duta
X, y = shuffle(X, y, randon_state=0)
scaler = StandardScaler()

X = scaler. fit_transforn(X)

Yitest = y075:]

Select model
€1f = linear_model.Perceptron()

Train model
clf. fit(X_train, y.train)

print(‘ueights:', clf.coef)
print(‘bias:', clf.intercept_)
Evaluate

y-pred = clf predict(X_train)
accuracy_score(y_train, y_pred)

Predict from model
y-pred = clf .predict([(2, 0.51))

Plot data + linear classifier
#pit.scatter (X[:,00, X[:,1],
plt.scatter(X_crain(:,0], X_train(:,1],
plt.scatter(X_test(:,0), X_test(:,1]

_train)
test, alpha=.25)

weights = clf .coof_(0]
bias = clf.intercept_
slope = -weights(0] / weights(1]
ylasercep = -bis / ightali)
- np.linspace(-2.

slopes_x + ymmww
©.plot(x, _y, '-r')

1.1 Load data

1.2 Preprocess data
shuffle
scale
split into train/test

2. Select model

3. Train model

loss (error)

y output: y {-1,1}
tralmng é - step function: s
weighted sum wix+b = wyx; + wyx, + b
updule W& b
T weights w & bias b (to be learned)
X1 X2 - inputs (features)
1.54 weights: [w1=-0.54, w2=-0.53]
bias: b=-1.00
1.04
0.54
0.01
—~0.5
-1.04
-1.51
-15 -1.0 -0.5 0.0 0.5 1.0 15

68/75

4. Application

4.4. From ML (sklearn) to DL (tensorflow)

Solution with Tensor Flow - Keras: 1 neuron network

import tensorflow as tf
import datasets
import linear_model
utils import shuffle
processing import StandardScaler

Load data
iris = datasets.load_iris()

X - iris.datals, (2, 9)) # petal lengeh, potal viden
¥ = (iris.target == 0).astype('int') # Iris setosa?

Preprocess data

X, y = shuffle(X, y, randon_state=0)
scaler = StandardScaler()

X = scaler.fit_transfora(X)

X_train = X[:75)

model = tf.keras.Sequential ([
£ .keras. layers . Flatten (input_shaps
£ .keras. layers .Dense(1, activatio:

Bodel..susmary ()

Compile model
model..conpile (optimizer='sg
loss=" Bmar)Cressentropy'.
metrics=['accuracy'])

Train model
history = model.fit(X_train, y_train, epochs=50) #, batch_size=10)

aluate model

st_acc = model..evaluate(X_test, y_test, verbose=2)

print('Test accuracy

Predict (data should be preprocessed just like training data)
probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax()])
pred = probability_model.predict([[-2,

print (pred)

1.1 Load data

1.2 Preprocess data
shuffle

scale

split into train/test

2.1 Build model
set layer type/order

2.2 Compile model

- set loss function

- set optimizer

- set metrics

3. Train model

- learn layer parameters (weights/biases)

- plot training history (check for overfitting)

loss (error)
y
training /A 1 layer
&/ with 1 neurons
update w & b -
W1NW,
bias T T
X1 X2
Model: "sequential®
Layer (type) Output Shape Param #
flatten (Flatten) (None, 2) ()
dense (Dense) (None, 1) 3

Total params: 3
Trainable params: 3
Non-trainable params: 0

69/75

4. Application
Application

So if we can do the same thing, why switch from sklearn to tensor flow ?

70/75

4. Application
Application

So if we can do the same thing, why switch from sklearn to tensor flow 7

Tensor Flow is a framework for Deep Learning

= can design multi-layered networks, and train them in a very flexible/optimized manner

= can solve much more complex problems, by optimizing several thousands/millions of
weights during training!

7175

4. Application

Application

“Hello World” example in Keras TensorFlow: MNIST fashion dataset classification task with MLP

import tensorflow as tf

Load data
fashion_mnist = tf.keras.datasets.fashion_mnist

(_train_full, y_train_full), (X_test, y_test) = fashion_mnist.load_data()
X_valid, X_train = X_train_full[:5000], X_train_full[5000:]
y_valid, y_train = y_train_full[:5000], y_train_full [5000:]

Preprocess data
X_train, X_test, X_valid = X_train/266.0, X_test/255.0, X_valid/255.0

Build model (using the Sequential APT)
Bodel = £ keras.models. Sequential ([
. keras. layers Flatten(input_shape=[28, 281),

tf .keras. layers.Dense (10, activation="softmax")

model . summary ()

Compile model
model.. conpile(loss="sparse_categorical _crossentropy”,
optimizer="sgd",
metrics=["accuracy"])

Train model
history = model .£it(X_train, y_train, validation data=(X_valid, y_valid),
epochs=30, # mb of times X_train is seen seen

print('training instances per epoch = {}'.fornat (X_train.shape[0] / 32))

Plot training history
import pandas as pd
pd.DataFrane (history.history) .plot()

Evaluate model
test_loss, test_acc = model.evaluate(¥_test, y_test)
. test_acc)

print('Test accuracy

Predict,
ing = X_test[0,:,:]

ing = (up.expand_dins (ing,0)) # add image to a batch
y-proba = model.predict (ing) .round(2)

y-pred = np.argnax(model .predict (ing), axis=-1)

plt.bar (range(10), y_proba[0])

1.1 Load data

- training dataset

- validation dataset
test dataset

1.2 Preprocess data
- scale pixel intensities to 0-1

2.1 Build model
- set layer type/order

2.2 Compile model
- set loss function

- set optimizer

- set metrics

3. Train model
- learn layer parameters (weights/biases)
- plot training history (check for overfitting)

plt. inshou(inglo, : ,
plt.title('class {}

1, cmap="binary")
{}'.fornat(y_pred, class_names[np.argnax(y_proba)l))

Thwon

“Ankle boot. Tshirtitop " Dress Tshirt/top.
il

otk “sequentiat

Layer (type) Output Shape’ Param #

roeeen oo (o ;

e o i 07 e

T R e

T .

Total parans: 266,610
Trainable parans: 266,610
Non-trainable parans

class probability

72/75

https://www.tensorflow.org/tutorials/keras/classification

4. Application

Application

“Hello World” example in Keras TensorFlow: MNIST fashion dataset classification task with MLP

import tensorflow as tf

Load data
fashion_mnist = tf.keras.datasets.fashion_mnist

(X_train_full, y_train_full), (X test, y_test) = fashion_mnist.load_data()
X_valid, X_train = X_train_full(:5000], X_train_ful1(5000:]
y_valid, y_train = y_train_full[:5000], y_train_ful1[5000:]

Preprocess data

X_train, X_test, X_valid = X_train/266.0, X_test/255.0, X_valid/255.0

Build model (using the Sequential API)

tf .keras. layers.Dense (10, activation="softmax")
model . summary ()

Compile model
model.. conpile(loss="sparse_categorical _crossentropy”,
optimizer="sgd
metrics=["accuracy"])

Train model
history = model .£it(X_train, y_train, validation data=(X_valid, y_valid),

R b R e e

Plot training history
import pandas as pd
pd.DataFrane (history.history) .plot()

Evaluate model
odel .evaluate(X_test,
:', test_acc)

test_loss, tes
print('Test accuracy

_ac ytest)

Predict,
ing = X_test[0,:,:]

ing = (np.expand_dims(ing,0)) # add image to a batch
y-proba = model.predict (ing) .round(2)

y-pred = np.argnax(model .predict (ing), axis=-1)

plt.bar (range (10),
plt. inshou(inglo, : ,
plt.title('class {}

{}'.fornat(y_pred, class_names[np.argnax(y_proba)l))

1.1 Load data

- training dataset

- validation dataset
test dataset

1.2 Preprocess data
- scale pixel intensities to 0-1

2.1 Build model
- set layer type/order

- set loss function
- set optimizer
- set metrics

3. Train model
- learn layer parameters (weights/biases)
- plot training history (check for overfitting|

47

Ank\c 3

Thwon

BN

Tniop

ss probability vector

34 neurons (28728

input = image (28x28 pixels)
Seas loss 19) = Ankle boot

73/75

https://www.tensorflow.org/tutorials/keras/classification

5. Glossary

5. Glossary

7475

5. Glossary

Glossary

Key parameters and definitions (from Google's ML glossary, Chollet 2017, etc.)

® loss function (objective function)
The quantity that will be minimized during training. It represents a measure of success for the task at hand.
® optimizer

Determines how the network will be updated based on the loss function. It implements a specific variant of stochastic gradient descent (SGD).

® accuracy
The fraction of predictions that a classification model got right.
® epoch
Each iteration over all the training data.
® batch_size
Number of samples per gradient update.
® activation function
A function (for example, ReLU or sigmoid) that takes in the weighted sum of all of the inputs from the previous layer and then generates and passes an
output value (typically nonlinear) to the next layer.
® softmax

A function that provides probabilities for each possible class in a multi-class classification model. The probabilities add up to exactly 1.0. For example,

softmax might determine that the probability of a particular image being a dog at 0.9, a cat at 0.08, and a horse at 0.02. 7575

https://developers.google.com/machine-learning/glossary

	Introduction
	Perceptron
	definition
	learning algorithm
	gradient descent
	limitations

	Multilayer perceptron (MLP)
	from single to multilayer perceptron
	activation functions
	backpropagation

	Application
	MLP playground
	Frameworks for Deep Learning
	Installing Tensor Flow
	From ML (sklearn) to DL (tensorflow)

	Glossary

