Shallow learners are dead – Long live shallow learners!

Random Forests in the age of Deep Learning

Ronny Hänsch

Data samples x
 ⇒ Pixel information, image patch, feature vector, etc.
 ⇒ Often x ∈ Rⁿ

- Classification:
 - ⇒ Estimate class label

• Training data: Values of target variable given e.g. class label

DLR.de • Chart 4 > Random Forests in the age of Deep Learning, R.Hänsch > Oct 30, 2024

From kNN to Search Trees

 Task: Given training data, estimate label of query sample

DLR.de • Chart 5 > Random Forests in the age of Deep Learning, R.Hänsch > Oct 30, 2024

From kNN to Search Trees

- Task: Given training data, estimate label of query sample
- kNN/Parzen Window:
 → Compute distance to all samples

- Task: Given training data, estimate label of query sample
- kNN/Parzen Window:

→ Compute distance to **all** samples

 \rightarrow Select samples within window of given size (Parzen)

X₁

- Task: Given training data, estimate label of query sample
- kNN/Parzen Window:

 \rightarrow Compute distance to all samples

→ Select samples within
 window of given size (Parzen)
 → Use these samples to
 estimate target variable, e.g.
 class label

 Problem: Computationally expensive (exhaustive search)

X₁

- Search trees
 - \rightarrow Quad/Octree, KD tree, etc.

- Search trees
 - \rightarrow Quad/Octree, KD tree, etc.
 - \rightarrow Divide space recursively into cells

X₁

- Search trees
 - \rightarrow Quad/Octree, KD tree, etc.
 - \rightarrow Divide space recursively into cells

X₁

- Search trees
 - \rightarrow Quad/Octree, KD tree, etc.
 - \rightarrow Divide space recursively into cells
 - \rightarrow Given a query, find relevant cells

X₁

- Search trees
 - \rightarrow Quad/Octree, KD tree, etc.
 - \rightarrow Divide space recursively into cells
 - \rightarrow Given a query, find relevant cells

X₁

- Search trees
 - \rightarrow Quad/Octree, KD tree, etc.
 - \rightarrow Divide space recursively into cells
 - \rightarrow Given a query, find relevant cells
 - \rightarrow Perform exhaustive search in these cells ONLY

X₁

- Search trees
 - \rightarrow Quad/Octree, KD tree, etc.
 - \rightarrow Divide space recursively into cells
 - \rightarrow Given a query, find relevant cells
 - \rightarrow Perform exhaustive search in these cells ONLY
- Exact search: Leads to equivalent results

X₁

- Search trees
 - \rightarrow Quad/Octree, KD tree, etc.
 - \rightarrow Divide space recursively into cells
 - \rightarrow Given a query, find relevant cells
 - \rightarrow Perform exhaustive search in these cells ONLY
- Exact search: Leads to equivalent results
- Approximation: Use samples
 within query cell directly

X₁

Cell construction

Cell construction

Cell construction

 → Simple threshold operation
 → Different threshold
 definitions (e.g. equi-sized
 cells, threshold as data
 median) lead to different
 search tree variants (e.g.
 quad-tree, k-D tree).

- Cell construction \rightarrow Simple threshold operation
- Decision stump:

Local estimate of the target variable (e.g. class posterior) is assigned to cells

X₁
Local estimate of the target variable (e.g. class posterior) is assigned to cells

Results in highly non-linear, even non-connected (but piecewise constant) decision boundaries

Other node tests are possible:

 \rightarrow Axis-aligned

$$t(\mathbf{x}) = \begin{cases} 0 & \text{if } x_i < \theta_r \\ 1 & \text{otherwise.} \end{cases}$$

$$t(\mathbf{x}) = \begin{cases} 0 & \text{if } \theta_r < x_i < \theta_s \\ 1 & \text{otherwise.} \end{cases}$$

Other node tests are possible:

- \rightarrow Axis-aligned
- \rightarrow Linear

$$\widetilde{\mathbf{x}} = [\mathbf{x}, 1] \in \mathbb{R}^{d+1}, \ \psi \in \mathbb{R}^{d+1}$$
$$t(\mathbf{x}) = \begin{cases} 0 & \text{if } \psi^T \widetilde{\mathbf{x}} < \theta_r \\ 1 & \text{otherwise.} \end{cases}$$

$$t(\mathbf{x}) = \begin{cases} 0 & \text{if } \theta_r < \psi^T \widetilde{\mathbf{x}} < \theta_s \\ 1 & \text{otherwise.} \end{cases}$$

Other node tests are possible:

- \rightarrow Axis-aligned
- \rightarrow Linear
- \rightarrow Conic section

$$\widetilde{\mathbf{x}} = [\mathbf{x}, 1] \in \mathbb{R}^{d+1}, \ \psi \in \mathbb{R}^{(d+1) \times (d+1)}$$
$$t(\mathbf{x}) = \begin{cases} 0 & \text{if } \widetilde{\mathbf{x}}^T \cdot \psi \cdot \widetilde{\mathbf{x}} < \theta_r \\ 1 & \text{otherwise.} \end{cases}$$
$$t(\mathbf{x}) = \begin{cases} 0 & \text{if } \theta_r < \widetilde{\mathbf{x}}^T \cdot \psi \cdot \widetilde{\mathbf{x}} < \theta_s \\ 1 & \text{otherwise.} \end{cases}$$

Other node tests are possible:

- \rightarrow Axis-aligned
- \rightarrow Linear
- \rightarrow Conic section
- \rightarrow Other data spaces than
- Image patches: $x \in R^{nxn}$
- Non-scalar features (histograms, categorical)

Advantages

- Can deal with very heterogeneous data

 \rightarrow Different, data-specific types of node tests

- Can deal with very heterogeneous data
 - \rightarrow Different, data-specific types of node tests
- Not prone to the curse of dimensionality
 - \rightarrow Each node only works on a very limited set of dimensions

- Can deal with very heterogeneous data
 - \rightarrow Different, data-specific types of node tests
- Not prone to the curse of dimensionality
 - \rightarrow Each node only works on a very limited set of dimensions
- Very efficient
 - \rightarrow Each sample passes maximal H nodes (H = maximal height)

- Can deal with very heterogeneous data
 - \rightarrow Different, data-specific types of node tests
- Not prone to the curse of dimensionality
 - \rightarrow Each node only works on a very limited set of dimensions
- Very efficient
 - \rightarrow Each sample passes maximal H nodes (H = maximal height)
- Easy to implement
 - \rightarrow Binary trees are one of the most basic data structures

- Can deal with very heterogeneous data
 - \rightarrow Different, data-specific types of node tests
- Not prone to the curse of dimensionality
 - \rightarrow Each node only works on a very limited set of dimensions
- Very efficient
 - \rightarrow Each sample passes maximal H nodes (H = maximal height)
- Easy to implement
 - \rightarrow Binary trees are one of the most basic data structures
- Easy to interpret
 - \rightarrow Path through tree is a connected set of decision rules

Advantages

- Can deal with very heterogeneous data
 - \rightarrow Different, data-specific types of node tests
- Not prone to the curse of dimensionality
 - \rightarrow Each node only works on a very limited set of dimensions
- Very efficient
 - \rightarrow Each sample passes maximal H nodes (H = maximal height)
- Easy to implement
 - \rightarrow Binary trees are one of the most basic data structures
- Easy to interpret
 - \rightarrow Path through tree is a connected set of decision rules
- Well understood

 \rightarrow Theoretical and practical implications of design decisions have been researched for more than 4 decades

Disadvantages

- Optimized by greedy algorithms

 \rightarrow A chain of individually optimal decisions, might not lead to an overall optimum

Disadvantages

- Optimized by greedy algorithms

 \rightarrow A chain of individually optimal decisions, might not lead to an overall optimum

- The optimal solution (i.e. decision boundary) might not be part of the model class (e.g. piece-wise linear and axis-aligned functions)

Disadvantages

- Optimized by greedy algorithms

 \rightarrow A chain of individually optimal decisions, might not lead to an overall optimum

- The optimal solution (i.e. decision boundary) might not be part of the model class (e.g. piece-wise linear and axis-aligned functions)
- Prone to overfitting

Disadvantages

- Optimized by greedy algorithms
 - \rightarrow A chain of individually optimal decisions, might not lead to an overall optimum
- The optimal solution (i.e. decision boundary) might not be part of the model class (e.g. piece-wise linear and axis-aligned functions)
- Prone to overfitting
- Model capacity depends on amount of data
 - \rightarrow Few samples = small trees: Only few questions can be asked.
 - → Many samples (might) lead to very high trees: Long processing times, large memory footprint.

Disadvantages

- Optimized by greedy algorithms
 - \rightarrow A chain of individually optimal decisions, might not lead to an overall optimum
- The optimal solution (i.e. decision boundary) might not be part of the model class (e.g. piece-wise linear and axis-aligned functions)
- Prone to overfitting
- Model capacity depends on amount of data
 - \rightarrow Few samples = small trees: Only few questions can be asked.
 - → Many samples (might) lead to very high trees: Long processing times, large memory footprint.

How to

 \rightarrow keep (most) of the advantages \rightarrow getting rid of (most) disadvantages?

Random Forests

Set of decision trees

- Each tree *t* generated from training data
- Creation of one tree independent of all other trees
- Based on random processes to produce diverse set of trees

Individual tree outcomes are fused (voting, averaging, ...)

Random Forests

- Many (suboptimal) baselearners, i.e. decision trees
- Combined output on average better than individual output
- Minimization of the risk to use wrong model
- . Extension of the model space
- Decreased dependence on initialization
- One name to rule them all
 - Bagged Decision Trees
 - Randomized Trees
 - Decision Forests
 - ERT, PERT, Rotation Forests, Canonical Correlation Forests, Hough Forests, Semantic Texton Forests, ...

Random Forests - Key questions

Why randomization?

 \rightarrow How to achieve a diverse and strong ensemble?

- What kind of node tests? \rightarrow For images, for other data spaces than R^n
- How to select node tests?
 - \rightarrow How to measure good tests?
- What kind of target variables? \rightarrow More than a single class label?
- How to limit model capacity (tree height, tree number)?
 → The more the better? What about overfitting?
- How to fuse tree decisions?
 - \rightarrow Whom to trust?
- How to interpret results?
 - \rightarrow Tree properties and visualization.

- The stronger the trees (large *s*), the stronger the ensemble!

- The stronger the trees (large *s*), the stronger the ensemble!
- The more correlated the trees (large ρ), the weaker the ensemble!

[Difference between asking 10 persons 1 time, or 1 person 10 times.]

Random Forests - Randomization through Bagging

Given: Training set D with |D| = N samples.

Bagging (Bootstrap aggregating):

1. Randomly sample M data sets D_m with replacement ($|D_m| = N$).

2. Train M models where m-th model has only access to m-th dataset.

3. Average all models.

Random Forests - Randomization through Bagging

Given: Training set D with |D| = N samples.

Bagging (Bootstrap aggregating):

1. Randomly sample M data sets D_m with replacement ($|D_m| = N$).

Train M models where m-th model has only access to m-th dataset.
 Average all models.

Meta learning technique

- Works if small change in input data leads to large model variation
- Reduces variance (of final model), avoids overfitting.
- Leads to diverse decision trees, even if all other parameters are fixed
- Variant: Subagging ≡ Sample without replacement
- Disadvantage: Less samples per tree (yet forest does see all samples)

Random Forests - Randomization through node tests

Per tree:

- Use randomized projections into subspaces (e.g. subset, PCA, LDA, ...)

Per node:

- Select a feature randomly
- Select threshold randomly
- \rightarrow Works only if
 - Many features are available
 - Each feature has many possible values
- → Will prefer features with many values (e.g. real values) over features with few values (e.g. categorical variables)

Random Forests - Key questions

- Why randomization?
 - \rightarrow How to achieve a diverse and strong ensemble?
- What kind of node tests?
 - \rightarrow For images, for other data spaces than $\ R^n$
- How to select node tests?
 → How to measure good tests?
- What kind of target variables? \rightarrow More than a single class label?
- How to limit model capacity (tree height, tree number)?
 → The more the better? What about overfitting?
- How to fuse tree decisions?
 - \rightarrow Whom to trust?
- How to interpret results?
 - \rightarrow Tree properties and visualization.

Generic object categorization in PolSAR images - and beyond, Hänsch, R., 2014.

Op : Patch \rightarrow Pixel (Scalar)

- Max. / min. value
- Central pixel
- Average

Image data

- Oberpfaffenhofen data set
- fully polarimetric
- E-SAR, DLR

Reference data

ProB-RF

BA = 89.4%	Urban	Forest	Field	Shrubl.	Road
Urban	0.94	0.05	0.00	0.00	0.01
Forest	0.02	0.97	0.00	0.01	0.00
Field	0.00	0.00	0.94	0.04	0.02
Shurbl.	0.02	0.03	0.06	0.89	0.00
Road	0.11	0.01	0.14	0.01	0.73

Op : Patch \rightarrow Pixel (Scalar)

- Max. / min. value
- Central pixel
- Average

- Max. / min. value
- Central pixel
- Average

- d : Scalar × Scalar → Scalar
- Signed / absolute difference

- Max. / min. grey value
- Central pixel
- Average

- $d: 3\text{-Vector} \times 3\text{-Vector} \rightarrow \text{Scalar}$
- Euclidean distance in any color space
- Difference in hue

- Average

- Polarimetric distance measures

Skipping the real world: Classification of PolSAR images without explicit feature extraction, R. Hänsch, O. Hellwich, ISPRS Journal of Photogrammetry and Remote Sensing, 2017

Reference data

RF with explicit feature extraction BA = 89.4%

RF without explicit feature extraction BA = 87.5%

DLR.de • Chart 80 > Random Forests in the age of Deep Learning, R.Hänsch > Oct 30, 2024

Summary: Projection-based Random Forests

1. ψ : Select regions within a patch \rightarrow Random size and position

- 1. ψ : Select regions within a patch \rightarrow Random size and position
- 2. φ: Select / compute pixel value
 - \rightarrow Random, data type dependent operator
 - \rightarrow HS signature: e.g. min/max power
 - \rightarrow Pol. cov. matrix: e.g. min/max pol. entropy

- 1. ψ : Select regions within a patch \rightarrow Random size and position
- 2. φ: Select / compute pixel value
 - \rightarrow Random, data type dependent operator
 - \rightarrow HS signature: e.g. min/max power
 - \rightarrow Pol. cov. matrix: e.g. min/max pol. entropy
- 3. d: Apply distance measure
 - \rightarrow Randomly selected
 - \rightarrow Data type dependent
 - \rightarrow HS signature: e.g. cosine similarity
 - \rightarrow Pol. cov. matrix: e.g. Bartlett distance

- 1. ψ : Select regions within a patch \rightarrow Random size and position
- 2. φ: Select / compute pixel value
 - \rightarrow Random, data type dependent operator
 - \rightarrow HS signature: e.g. min/max power
 - \rightarrow Pol. cov. matrix: e.g. min/max pol. entropy
- 3. d: Apply distance measure
 - \rightarrow Randomly selected
 - \rightarrow Data type dependent
 - \rightarrow HS signature: e.g. cosine similarity
 - \rightarrow Pol. cov. matrix: e.g. Bartlett distance
- 4. Compare to scalar (split threshold)

- Can be directly applied to any kind of data
- Learns features directly from the data
- Project local patches into scalars
- Direct connection between scale of the projection and access to context

Random Forests - Split point selection - Unsupervised

Random Forests - Split point selection - Unsupervised

Random Forests - Split point selection - Supervised

Max. drop of impurity: $\theta = \arg \min_{\hat{\theta}} \left[I(n) - P_L I(n_L) - P_R I(n_R) \right]$

п	 Set of samples in current node
$n_{L/R}$	 Set of samples in left / right child node
$P_{L/R}$	 Fraction of samples that are in left / right child node
I	 A measure of impurity

 \rightarrow Find a test function that splits the data into two subsets that are as "pure" as possible regarding the class distribution (i.e. contain only samples of a single class in the best case)

Random Forests - Split point selection - Supervised Max. drop of impurity: $\theta = \arg \min_{n} [I(n) - P_L I(n_L) - P_R I(n_R)]$

Random Forests - Split point selection

- Other possibilities available
 - → Intervals, structured label spaces, inter-class split
- Need for computational efficiency since selection is performed thousand to million times during training
- Avoid exhaustive search

Random Forests - Key questions

- Why randomization?
 - \rightarrow How to achieve a diverse and strong ensemble?
- What kind of node tests?
 - \rightarrow For images, for other data spaces than \mathbb{R}^n
- How to select node tests?
 → How to measure good tests?
- What kind of target variables? \rightarrow More than a single class label?
- How to limit model capacity (tree height, tree number)?
 → The more the better? What about overfitting?
- How to fuse tree decisions?
 - \rightarrow Whom to trust?
- How to interpret results?
 - \rightarrow Tree properties and visualization.

- . Generate m split candidates
 - \rightarrow "Traditionally": $m = \sqrt{d}$, where d is data dimension
 - \rightarrow "Modern" approaches: $m \approx 10^5$
 - \rightarrow Usually even m = 2 leads to performance increase
 - \rightarrow Trade-off between high performance and high correlation

- . Generate m split candidates
 - \rightarrow "Traditionally": $m = \sqrt{d}$, where d is data dimension
 - \rightarrow "Modern" approaches: $m \approx 10^5$
 - \rightarrow Usually even m = 2 leads to performance increase
 - \rightarrow Trade-off between high performance and high correlation
- Select best split, reject all others

- . Generate m split candidates
 - \rightarrow "Traditionally": $m = \sqrt{d}$, where d is data dimension
 - \rightarrow "Modern" approaches: $m \approx 10^5$
 - \rightarrow Usually even m = 2 leads to performance increase
 - \rightarrow Trade-off between high performance and high correlation
- Select best split, reject all others
- Measure optimality of a split
 - \rightarrow Classification: "Purity" of child nodes (e.g. Gini, entropy, etc.)
 - \rightarrow Regression: e.g. variance
 - → In general: How much better is the estimation of the child nodes (as a weighted average) than parent nodes?

Random Forests - Key questions

- Why randomization?
 - \rightarrow How to achieve a diverse and strong ensemble?
- What kind of node tests?
 - \rightarrow For images, for other data spaces than \mathbb{R}^n
- How to select node tests?
 - \rightarrow How to measure good tests?
- . What kind of target variables? \rightarrow More than a single class label?
- How to limit model capacity (tree height, tree number)?
 → The more the better? What about overfitting?
- How to fuse tree decisions?
 - \rightarrow Whom to trust?
- How to interpret results?
 - \rightarrow Tree properties and visualization.

Sensor to sensor transcoding, e.g. grayscale to color **Color Images Grayscale Image Colorized Image Random Forest**

- Data given as intensity image

- Target is (a, b) chrominance vector of the Lab color space

- \rightarrow Leaf information are 2D histograms
- \rightarrow Combined by averaging
- \rightarrow Final result is the (*a*,*b*) vector with highest probability
- \rightarrow Given intensity will serve as luminance L
- Node optimization: Minimize variance
 - \rightarrow Create child nodes with "pure" colors

64

B-value

-64

-128

4000 2000 -128 -64

0 64

A-value

128

- Data given as intensity image
- Target is (a, b) chrominance vector of the Lab color space
 - \rightarrow Leaf information are 2D histograms
 - \rightarrow Combined by averaging
 - \rightarrow Final result is the (*a*,*b*) vector with highest probability
 - \rightarrow Given intensity will serve as luminance L
- Node optimization: Minimize variance
 - \rightarrow Create child nodes with "pure" colors
- Unbalanced data requires implicit data rebalancing
 - → Use weighted sums (variance, histograms) where the weight is inversely proportional to occurrence.

Reference & Input

Results (RF trained on a few topic-specific images)

DL results (ConvNet trained on large image database)

Random Forests - Key questions

- Why randomization?
 - \rightarrow How to achieve a diverse and strong ensemble?
- What kind of node tests?
 - \rightarrow For images, for other data spaces than \mathbb{R}^n
- How to select node tests?
 - \rightarrow How to measure good tests?
- What kind of target variables? \rightarrow More than a single class label?
- How to limit model capacity (tree height, tree number)?
 → The more the better? What about overfitting?
- How to fuse tree decisions?
 - \rightarrow Whom to trust?
- How to interpret results?
 - \rightarrow Tree properties and visualization.

DLR.de • Chart 104 > Random Forests in the age of Deep Learning, R.Hänsch > Oct 30, 2024

Random Forests – Interpretation

DLR.de • Chart 105 > Random Forests in the age of Deep Learning, R.Hänsch > Oct 30, 2024

Random Forests – Interpretation

Random Forests – Interpretation: Visualization

Colorful Trees: Visualizing Random Forests for Analysis and Interpretation, R. Hänsch, P. Wiesner, S. Wendler, O. Hellwich, IEEE Winter Conf. on Applications of Computer Vision, 2019

Random Forests – Interpretation: Forest Overview

- Arangement of trees in 2D space represents correlation of their decisions

- Trees with similar structure are in spatial proximity (high correlation)

- Allows a fast assessment of individual tree strength as well as tree similarity

Random Forests – Interpretation: Detailed analysis

Tracking of the path of indivi-dual samples through the tree
Random Forests – Interpretation: Tree Topology

Random Forests – Interpretation: Leaf information

Threshold via grid-search (highly optimized)

Random Forests – Interpretation: Consolidation nodes

Classification of PolSAR Images by Stacked Random Forests, R. Hänsch, O. Hellwich, ISPRS International Journal of Geo-Information, 2018

DLR.de • Chart 123 > Random Forests in the age of Deep Learning, R.Hänsch > Oct 30, 2024

DLR

But what about Deep Learning?

Sentinel-1 radar

Exploiting GAN-Based SAR to Optical Image Transcoding for Improved Classification via Deep Learning A. Ley, O. D'Hondt, S. Valade, R. Hänsch, O. Hellwich, EUSAR 2018

DLR

But what about Deep Learning?

Exploiting GAN-Based SAR to Optical Image Transcoding for Improved Classification via Deep Learning A. Ley, O. D'Hondt, S. Valade, R. Hänsch, O. Hellwich, EUSAR 2018

DLR

Self-supervised learning via transcoding

Exploiting GAN-Based SAR to Optical Image Transcoding for Improved Classification via Deep Learning A. Ley, O. D'Hondt, S. Valade, R. Hänsch, O. Hellwich, EUSAR 2018

DLR

Self-supervised learning via transcoding

Exploiting GAN-Based SAR to Optical Image Transcoding for Improved Classification via Deep Learning A. Ley, O. D'Hondt, S. Valade, R. Hänsch, O. Hellwich, EUSAR 2018

Conclusion

- Deep Learning works! Differentiable learning won't go away for the next years.
- But (modern!) shallow learners are still of importance.
- They are competitive and sometimes even superior to deep learners.

- RF (and other shallow learners) scale less well with large datasets
- Decision trees are not differentiable (at least not in their vanilla version)

- Take home message: Use the right tool for the right job (in the right way).

