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Shallow learners are dead – Long live shallow learners! 

Random Forests in the age of Deep Learning
Part 1: Classical approaches to machine learning

Ronny Hänsch
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Random 
Forests?
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From kNN to Search Trees

● Data samples x
⇒ Pixel information, image 
patch, feature vector, etc.
⇒ Often x ∈ Rn

● Classification:
⇒ Estimate class label

● Training data: Values of target 
variable given e.g. class label x1

x2
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From kNN to Search Trees

● Task: Given training data, 
estimate label of query sample

x1

x2
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From kNN to Search Trees

x1

x2● Task: Given training data, 
estimate label of query sample

● kNN/Parzen Window:
→ Compute distance to all 
samples
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From kNN to Search Trees

x1

x2● Task: Given training data, 
estimate label of query sample

● kNN/Parzen Window:
→ Compute distance to all 
samples
→ Select samples within 
window of given size (Parzen)
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From kNN to Search Trees

x1

x2● Task: Given training data, 
estimate label of query sample

● kNN/Parzen Window:
→ Compute distance to all 
samples
→ Select samples within 
window of given size (Parzen)
→ Use these samples to 
estimate target variable, e.g. 
class label

● Problem: Computationally 
expensive (exhaustive search)
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From kNN to Search Trees

● Search trees
→ Quad/Octree, KD tree, etc.
 

x1

x2
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From kNN to Search Trees

x1

x2● Search trees
→ Quad/Octree, KD tree, etc.
→ Divide space recursively into 
cells
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From kNN to Search Trees

x1

x2● Search trees
→ Quad/Octree, KD tree, etc.
→ Divide space recursively into 
cells
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From kNN to Search Trees

x1

x2● Search trees
→ Quad/Octree, KD tree, etc.
→ Divide space recursively into 
cells
→ Given a query, find relevant 
cells
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From kNN to Search Trees

x1

x2● Search trees
→ Quad/Octree, KD tree, etc.
→ Divide space recursively into 
cells
→ Given a query, find relevant 
cells
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From kNN to Search Trees

x1

x2● Search trees
→ Quad/Octree, KD tree, etc.
→ Divide space recursively into 
cells
→ Given a query, find relevant 
cells
→ Perform exhaustive search 
in these cells ONLY
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From kNN to Search Trees

x1

x2● Search trees
→ Quad/Octree, KD tree, etc.
→ Divide space recursively into 
cells
→ Given a query, find relevant 
cells
→ Perform exhaustive search 
in these cells ONLY

● Exact search: Leads to 
equivalent results
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From kNN to Search Trees

x1

x2● Search trees
→ Quad/Octree, KD tree, etc.
→ Divide space recursively into 
cells
→ Given a query, find relevant 
cells
→ Perform exhaustive search 
in these cells ONLY

● Exact search: Leads to 
equivalent results

● Approximation: Use samples 
within query cell directly
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From Search Trees to (Random) Decision Trees

● Cell construction
 

x1

x2
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From Search Trees to (Random) Decision Trees

● Cell construction

x1

x2

θ2

θ1
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From Search Trees to (Random) Decision Trees

● Cell construction
→ Simple threshold operation
→ Different threshold 
definitions (e.g. equi-sized 
cells, threshold as data 
median) lead to different 
search tree variants (e.g. 
quad-tree, k-D tree).

x1

x2

θ2

θ1
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From Search Trees to (Random) Decision Trees

● Cell construction
→ Simple threshold operation

● Decision stump:

x1

x2

θ1

1 0

θ1
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From Search Trees to (Random) Decision Trees

● Cell construction
→ Simple threshold operation

● Decision stump:

x1

x2

θ1

1 0

1 0 1 0

θ2

θ1

θ2 θ2
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From Search Trees to (Random) Decision Trees

● Cell construction
→ Simple threshold operation

● Decision stump:

x1

x2

θ1

θ2

θ3

1 0

1 0 1 0

θ1

θ2 θ3
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From Search Trees to (Random) Decision Trees

x1

x2
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From Search Trees to (Random) Decision Trees

x1

x2

θ1
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From Search Trees to (Random) Decision Trees
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θ1
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees

Local estimate of the target 
variable (e.g. class posterior) is 
assigned to cells

x1

x2
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From Search Trees to (Random) Decision Trees

Local estimate of the target 
variable (e.g. class posterior) is 
assigned to cells

Results in highly non-linear, even 
non-connected (but piecewise 
constant) decision boundaries

x1

x2



DLR.de  •  Chart 38 > Random Forests in the age of Deep Learning, R.Hänsch > Oct 30, 2024

From Search Trees to (Random) Decision Trees

Other node tests are possible:

→ Axis-aligned
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From Search Trees to (Random) Decision Trees

Other node tests are possible:

→ Axis-aligned

→ Linear

x1

x2

x1

x2
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x1

x2

From Search Trees to (Random) Decision Trees

Other node tests are possible:

→ Axis-aligned

→ Linear

→ Conic section
x1

x2
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From Search Trees to (Random) Decision Trees

Other node tests are possible:

→ Axis-aligned

→ Linear

→ Conic section

→ Other data spaces than
- Image patches: x ∈ Rnxn

- Non-scalar features
  (histograms, categorical)
- ...
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From (Random) Decision Trees to Random Forests
Advantages

- Can deal with very heterogeneous data
→ Different, data-specific types of node tests
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From (Random) Decision Trees to Random Forests
Advantages

- Can deal with very heterogeneous data
→ Different, data-specific types of node tests

- Not prone to the curse of dimensionality
→ Each node only works on a very limited set of dimensions



DLR.de  •  Chart 44 > Random Forests in the age of Deep Learning, R.Hänsch > Oct 30, 2024

From (Random) Decision Trees to Random Forests
Advantages

- Can deal with very heterogeneous data
→ Different, data-specific types of node tests

- Not prone to the curse of dimensionality
→ Each node only works on a very limited set of dimensions

- Very efficient
→ Each sample passes maximal H nodes (H = maximal height)
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From (Random) Decision Trees to Random Forests
Advantages

- Can deal with very heterogeneous data
→ Different, data-specific types of node tests

- Not prone to the curse of dimensionality
→ Each node only works on a very limited set of dimensions

- Very efficient
→ Each sample passes maximal H nodes (H = maximal height)

- Easy to implement
→ Binary trees are one of the most basic data structures
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From (Random) Decision Trees to Random Forests
Advantages

- Can deal with very heterogeneous data
→ Different, data-specific types of node tests

- Not prone to the curse of dimensionality
→ Each node only works on a very limited set of dimensions

- Very efficient
→ Each sample passes maximal H nodes (H = maximal height)

- Easy to implement
→ Binary trees are one of the most basic data structures

- Easy to interpret
→ Path through tree is a connected set of decision rules
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From (Random) Decision Trees to Random Forests
Advantages

- Can deal with very heterogeneous data
→ Different, data-specific types of node tests

- Not prone to the curse of dimensionality
→ Each node only works on a very limited set of dimensions

- Very efficient
→ Each sample passes maximal H nodes (H = maximal height)

- Easy to implement
→ Binary trees are one of the most basic data structures

- Easy to interpret
→ Path through tree is a connected set of decision rules

- Well understood
→ Theoretical and practical implications of design decisions have 
been researched for more than 4 decades
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From (Random) Decision Trees to Random Forests
Disadvantages

- Optimized by greedy algorithms
→ A chain of individually optimal decisions, might not lead to an 
overall optimum
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From (Random) Decision Trees to Random Forests
Disadvantages

- Optimized by greedy algorithms
→ A chain of individually optimal decisions, might not lead to an 
overall optimum

- The optimal solution (i.e. decision boundary) might not be part of the 
model class (e.g. piece-wise linear and axis-aligned functions)
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From (Random) Decision Trees to Random Forests
Disadvantages

- Optimized by greedy algorithms
→ A chain of individually optimal decisions, might not lead to an 
overall optimum

- The optimal solution (i.e. decision boundary) might not be part of the 
model class (e.g. piece-wise linear and axis-aligned functions)

- Prone to overfitting
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From (Random) Decision Trees to Random Forests
Disadvantages

- Optimized by greedy algorithms
→ A chain of individually optimal decisions, might not lead to an 
overall optimum

- The optimal solution (i.e. decision boundary) might not be part of the 
model class (e.g. piece-wise linear and axis-aligned functions)

- Prone to overfitting
- Model capacity depends on amount of data

→ Few samples = small trees: Only few questions can be asked.
→ Many samples (might) lead to very high trees: Long processing

times, large memory footprint.
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From (Random) Decision Trees to Random Forests
Disadvantages

- Optimized by greedy algorithms
→ A chain of individually optimal decisions, might not lead to an 
overall optimum

- The optimal solution (i.e. decision boundary) might not be part of the 
model class (e.g. piece-wise linear and axis-aligned functions)

- Prone to overfitting
- Model capacity depends on amount of data

→ Few samples = small trees: Only few questions can be asked.
→ Many samples (might) lead to very high trees: Long processing

times, large memory footprint.
How to

→ keep (most) of the advantages
→ getting rid of (most) disadvantages?
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From (Random) Decision Trees to Random Forests
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− Individual Random Trees
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From (Random) Decision Trees to Random Forests
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From (Random) Decision Trees to Random Forests
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From (Random) Decision Trees to Random Forests
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Random Forests

Set of decision trees
● Each tree t generated from training data 
● Creation of one tree independent of all other trees
● Based on random processes to produce diverse set of trees
● Individual tree outcomes are fused (voting, averaging, …)
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Random Forests
● Many (suboptimal) baselearners, i.e. decision trees
● Combined output on average better than individual output
● Minimization of the risk to use wrong model
● Extension of the model space
● Decreased dependence on initialization
● One name to rule them all

− Bagged Decision Trees

− Randomized Trees

− Decision Forests

− ERT, PERT, Rotation Forests, Canonical Correlation Forests, 
Hough Forests, Semantic Texton Forests, ...
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Random Forests - Key questions
● Why randomization?

→ How to achieve a diverse and strong ensemble?
● What kind of node tests?

→ For images, for other data spaces than Rn 
● How to select node tests?

→ How to measure good tests?
● What kind of target variables?

→ More than a single class label?
● How to limit model capacity (tree height, tree number)?

→ The more the better? What about overfitting?
● How to fuse tree decisions?

→ Whom to trust?
● How to interpret results?

→ Tree properties and visualization.
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Random Forests - Why randomization?
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Random Forests - Why randomization?

Generalization error
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Random Forests - Why randomization?

Generalization error Avg. tree strength

- The stronger the trees (large s), the stronger the ensemble!
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Random Forests - Why randomization?

Generalization error Avg. tree correlation Avg. tree strength

- The stronger the trees (large s), the stronger the ensemble!

- The more correlated the trees (large ⍴), the weaker the ensemble!

[Difference between asking 10 persons 1 time, or 1 person 10 times.] 
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Given: Training set D with |D| = N samples.

Bagging (Bootstrap aggregating):
1. Randomly sample M data sets Dm with replacement (|Dm| = N).
2. Train M models where m-th model has only access to m-th dataset.
3. Average all models.

Random Forests - Randomization through Bagging



DLR.de  •  Chart 65 > Random Forests in the age of Deep Learning, R.Hänsch > Oct 30, 2024

Given: Training set D with |D| = N samples.

Bagging (Bootstrap aggregating):
1. Randomly sample M data sets Dm with replacement (|Dm| = N).
2. Train M models where m-th model has only access to m-th dataset.
3. Average all models.

Meta learning technique
- Works if small change in input data leads to large model variation
- Reduces variance (of final model), avoids overfitting.
- Leads to diverse decision trees, even if all other parameters are fixed
- Variant: Subagging ≡ Sample without replacement
- Disadvantage: Less samples per tree (yet forest does see all samples)

Random Forests - Randomization through Bagging
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Per tree:
- Use randomized projections into

subspaces (e.g. subset, PCA, LDA, …)

Per node:
- Select a feature randomly
- Select threshold randomly

→ Works only if
- Many features are available
- Each feature has many possible values

→ Will prefer features with many values (e.g. real values) over 
features with few values (e.g. categorical variables)

Random Forests - Randomization through node tests

x1

x2

θ1
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Random Forests - Key questions
● Why randomization?

→ How to achieve a diverse and strong ensemble?
● What kind of node tests?

→ For images, for other data spaces than  Rn

● How to select node tests?
→ How to measure good tests?

● What kind of target variables?
→ More than a single class label?

● How to limit model capacity (tree height, tree number)?
→ The more the better? What about overfitting?

● How to fuse tree decisions?
→ Whom to trust?

● How to interpret results?
→ Tree properties and visualization.
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RF - Holistic Feature Selection and Classification

- Speckle-based texture

Single-polarimetric

- Normalised RGB Values
- HSV

Color

- Distance transformation

Binary

- Local statistics
- Gradient histogram
- Gray-Level Coocurrence Matrix

Grayscale

- Subaperture
- Intensity in different channels
- Decompositions
- Eigenvalue based features
- Correlation among channels
- Physica classification

Fully-polarimetric

Generic object categorization in PolSAR images - and beyond, Hänsch, R., 2014.
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RF - Holistic Feature Selection and Classification

Nx
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RF - Holistic Feature Selection and Classification

Nx

Ny

F

Feature projection:
Selection of feature f (1 ≤ f ≤ F)

ℝNx x Ny x F ℝNx x Ny
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RF - Holistic Feature Selection and Classification

Nx

Ny

F

Feature projection:
Selection of feature f (1 ≤ f ≤ F)

ℝNx x Ny x F ℝNx x Ny

Spatial projection

ℝNx x Ny ℝ
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RF - Holistic Feature Selection and Classification

Nx

Ny

F

Feature projection:
Selection of feature f (1 ≤ f ≤ F)

ℝNx x Ny x F ℝNx x Ny

Spatial projection

ℝNx x Ny ℝ

1-Point projection 2-Point projection 4-Point projection
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RF - Holistic Feature Selection and Classification

   : Patch → Pixel (Scalar)
- Max. / min. value
- Central pixel
- Average

Data Pre-
processing LabelFeature

Extraction
Classifi-
cation

Post-
processing

Feature
Selection

1-Point projection 2-Point projection 4-Point projection
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RF - Holistic Feature Selection and Classification

Reference data

ProB-RF

Image data
  - Oberpfaffenhofen data set
  - fully polarimetric
  - E-SAR, DLR

Urban Forest Field Shrubl. Road
Urban
Forest
Field

Shurbl.
Road

BA = 89.4%
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RF - Holistic Feature Selection and Classification

   : Patch → Pixel (Scalar)
- Max. / min. value
- Central pixel
- Average

Data Pre-
processing LabelFeature

Extraction
Classifi-
cation

Post-
processing

Feature
Selection

1-Point projection 2-Point projection 4-Point projection
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RF - Holistic Feature Selection and Classification

   : Patch → Pixel (Scalar)
- Max. / min. value
- Central pixel
- Average

   : Scalar x Scalar→ Scalar
- Signed / absolute difference

Data Pre-
processing LabelFeature

Extraction
Classifi-
cation

Post-
processing

Feature
Selection

1-Point projection 2-Point projection 4-Point projection
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RF - Holistic Feature Extraction and Classification

1-Point projection 2-Point projection 4-Point projection

Data Pre-
processing LabelFeature

Extraction
Classifi-
cation

Post-
processing

Feature
Selection

   : Patch → Pixel (3-Vector)
- Max. / min. grey value
- Central pixel
- Average

   : 3-Vector x 3-Vector → Scalar
- Euclidean distance in any color space
- Difference in hue
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RF - Holistic Feature Extraction and Classification

1-Point projection 2-Point projection 4-Point projection

   : Patch → Pixel (Matrix)
- Max. / min. span
- Central pixel
- Average

   : Matrix x Matrix → Scalar
- Difference of polarimetric features
- General matrix distances
- Polarimetric distance measures

Skipping the real world: Classification of PolSAR images without explicit feature extraction,
R. Hänsch, O. Hellwich, ISPRS Journal of Photogrammetry and Remote Sensing, 2017

Data Pre-
processing LabelFeature

Extraction
Classifi-
cation

Post-
processing

Feature
Selection
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RF - Holistic Feature Extraction and Classification

RF with
explicit feature extraction
BA = 89.4%

RF without
explicit feature extraction
BA = 87.5%

Reference data
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1. ψ: Select regions within a patch
→ Random size and position

Summary: Projection-based Random Forests
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1. ψ: Select regions within a patch
→ Random size and position

2. φ: Select / compute pixel value 
→ Random, data type dependent operator
→ HS signature: e.g. min/max power
→ Pol. cov. matrix: e.g. min/max pol. entropy

Summary: Projection-based Random Forests
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1. ψ: Select regions within a patch
→ Random size and position

2. φ: Select / compute pixel value 
→ Random, data type dependent operator
→ HS signature: e.g. min/max power
→ Pol. cov. matrix: e.g. min/max pol. entropy

3. d: Apply distance measure
→ Randomly selected
→ Data type dependent
→ HS signature: e.g. cosine similarity
→ Pol. cov. matrix: e.g. Bartlett distance

Summary: Projection-based Random Forests
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1. ψ: Select regions within a patch
→ Random size and position

2. φ: Select / compute pixel value 
→ Random, data type dependent operator
→ HS signature: e.g. min/max power
→ Pol. cov. matrix: e.g. min/max pol. entropy

3. d: Apply distance measure
→ Randomly selected
→ Data type dependent
→ HS signature: e.g. cosine similarity
→ Pol. cov. matrix: e.g. Bartlett distance

4. Compare to scalar (split threshold)

Summary: Projection-based Random Forests
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● Can be directly applied to any kind of 
data

● Learns features directly from the data

● Project local patches into scalars

● Direct connection between scale of 
the projection and access to context

Summary: Projection-based Random Forests
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Random Forests - Split point selection - Unsupervised

Uniform sampled Gaussian sampled
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Random Forests - Split point selection - Unsupervised

Interval center Mean value Median value
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Random Forests - Split point selection - Supervised

n … Set of samples in current node
nL/R … Set of samples in left / right child node
PL/R … Fraction of samples that are in left / right child node
I … A measure of impurity

→ Find a test function that splits the data into two subsets that are as 
“pure” as possible regarding the class distribution (i.e. contain only 
samples of a single class in the best case)



DLR.de  •  Chart 88 > Random Forests in the age of Deep Learning, R.Hänsch > Oct 30, 2024

Random Forests - Split point selection - Supervised

Entropy Gini Misclassification
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Random Forests - Split point selection

● Other possibilities available
→ Intervals, structured label spaces, 

inter-class split
 

● Need for computational efficiency 
since selection is performed 
thousand to million times during 
training

● Avoid exhaustive search
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Random Forests - Key questions
● Why randomization?

→ How to achieve a diverse and strong ensemble?
● What kind of node tests?

→ For images, for other data spaces than Rn 
● How to select node tests?

→ How to measure good tests?
● What kind of target variables?

→ More than a single class label?
● How to limit model capacity (tree height, tree number)?

→ The more the better? What about overfitting?
● How to fuse tree decisions?

→ Whom to trust?
● How to interpret results?

→ Tree properties and visualization.
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Random Forests - Node optimization
● Generate m split candidates

→ “Traditionally”: , where d is data dimension
→ “Modern” approaches: 
→ Usually even m = 2 leads to performance increase
→ Trade-off between high performance and high correlation
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Random Forests - Node optimization
● Generate m split candidates

→ “Traditionally”: , where d is data dimension
→ “Modern” approaches: 
→ Usually even m = 2 leads to performance increase
→ Trade-off between high performance and high correlation

● Select best split, reject all others
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Random Forests - Node optimization
● Generate m split candidates

→ “Traditionally”: , where d is data dimension
→ “Modern” approaches: 
→ Usually even m = 2 leads to performance increase
→ Trade-off between high performance and high correlation

● Select best split, reject all others

● Measure optimality of a split
→ Classification: “Purity” of child nodes (e.g. Gini, entropy, etc.)
→ Regression: e.g. variance
→ In general: How much better is the estimation of the child nodes 

(as a weighted average) than parent nodes?
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Random Forests - Node optimization

Uniform:

Median:

Gini:

m=1
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Random Forests - Node optimization

Uniform:

Median:

Gini:

m=1 m=10 m=100
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Random Forests - Key questions
● Why randomization?

→ How to achieve a diverse and strong ensemble?
● What kind of node tests?

→ For images, for other data spaces than Rn

● How to select node tests?
→ How to measure good tests?

● What kind of target variables?
→ More than a single class label?

● How to limit model capacity (tree height, tree number)?
→ The more the better? What about overfitting?

● How to fuse tree decisions?
→ Whom to trust?

● How to interpret results?
→ Tree properties and visualization.
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Random Forests - Regression: Colorization

Sensor to sensor transcoding, e.g. grayscale to color
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Random Forests - Regression: Colorization

- Data given as intensity image

- Target is (a, b) chrominance vector of the Lab color space
→ Leaf information are 2D histograms
→ Combined by averaging
→ Final result is the (a,b) vector with highest probability
→ Given intensity will serve as luminance L

- Node optimization: Minimize variance
→ Create child nodes with “pure” colors
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Random Forests - Regression: Colorization

- Data given as intensity image

- Target is (a, b) chrominance vector of the Lab color space
→ Leaf information are 2D histograms
→ Combined by averaging
→ Final result is the (a,b) vector with highest probability
→ Given intensity will serve as luminance L

- Node optimization: Minimize variance
→ Create child nodes with “pure” colors

- Unbalanced data requires implicit data rebalancing
→ Use weighted sums (variance, histograms) where 

the weight is inversely proportional to occurrence.
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Random Forests - Regression: Colorization

Reference & Input
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Random Forests - Regression: Colorization

Results (RF trained on a few topic-specific images)
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Random Forests - Regression: Colorization

DL results (ConvNet trained on large image database)
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Random Forests - Key questions
● Why randomization?

→ How to achieve a diverse and strong ensemble?
● What kind of node tests?

→ For images, for other data spaces than Rn

● How to select node tests?
→ How to measure good tests?

● What kind of target variables?
→ More than a single class label?

● How to limit model capacity (tree height, tree number)?
→ The more the better? What about overfitting?

● How to fuse tree decisions?
→ Whom to trust?

● How to interpret results?
→ Tree properties and visualization.
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Random Forests – Interpretation
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Random Forests – Interpretation
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Random Forests – Interpretation: Visualization

Colorful Trees: Visualizing Random Forests for Analysis and Interpretation,
R. Hänsch, P. Wiesner, S. Wendler, O. Hellwich, IEEE Winter Conf. on Applications of Computer Vision, 2019
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Random Forests – Interpretation: Forest Overview

- Arangement of trees in 2D space 
represents correlation of their decisions

- Trees with similar structure are in 
spatial proximity (high correlation)

- Allows a fast assessment of individual 
tree strength as well as tree similarity
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Random Forests – Interpretation: Detailed analysis

Zoom into subtrees
Tracking of the path of 
indivi-dual samples through the 
tree
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Random Forests – Interpretation: Tree Topology

Uniformly sampled thresholdThreshold as median
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Random Forests – Interpretation: Leaf information

Class assignment „Purity“, e.g. entropy of 
the class posterior

Threshold via grid-search
(highly optimized)
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Random Forests – Interpretation: Consolidation nodes

Height-limited renderingThreshold via grid-search
(weakly optimized)
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Random Forests – Advanced Concepts: Stacked RF

Classification of PolSAR Images by Stacked Random Forests, 
R. Hänsch, O. Hellwich, ISPRS International Journal of Geo-Information, 2018
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Random Forests – Advanced Concepts: Stacked RF

Image detail
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Uncertainty
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Random Forests – Advanced Concepts: Stacked RF

Level 2

BA = 88.6%
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Random Forests – Advanced Concepts: Stacked RF
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BA = 89.5%
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Random Forests – Advanced Concepts: Stacked RF

Level 4

BA = 90.0%

Image detail

Reference

Estimate

Uncertainty



DLR.de  •  Chart 117 > Random Forests in the age of Deep Learning, R.Hänsch > Oct 30, 2024

Random Forests – Advanced Concepts: Stacked RF
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BA = 90.4%
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Random Forests – Advanced Concepts: Stacked RF
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Random Forests – Advanced Concepts: Stacked RF
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Random Forests – Advanced Concepts: Stacked RF
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Random Forests – Advanced Concepts: Stacked RF
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Random Forests – Advanced Concepts: Stacked RF

Level 10

BA = 90.7%

Image detail
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Estimate
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But what about Deep Learning?

Exploiting GAN-Based SAR to Optical Image Transcoding for Improved Classification via Deep Learning
A. Ley, O. D’Hondt, S. Valade, R. Hänsch, O. Hellwich, EUSAR 2018
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But what about Deep Learning?

Exploiting GAN-Based SAR to Optical Image Transcoding for Improved Classification via Deep Learning
A. Ley, O. D’Hondt, S. Valade, R. Hänsch, O. Hellwich, EUSAR 2018
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Self-supervised learning via transcoding

Exploiting GAN-Based SAR to Optical Image Transcoding for Improved Classification via Deep Learning
A. Ley, O. D’Hondt, S. Valade, R. Hänsch, O. Hellwich, EUSAR 2018
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Self-supervised learning via transcoding

Exploiting GAN-Based SAR to Optical Image Transcoding for Improved Classification via Deep Learning
A. Ley, O. D’Hondt, S. Valade, R. Hänsch, O. Hellwich, EUSAR 2018
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- Deep Learning works! Differentiable learning won’t go away for the next years.

- But (modern!) shallow learners are still of importance.

- They are competitive and sometimes even superior to deep learners.

- RF (and other shallow learners) scale less well with large datasets

- Decision trees are not differentiable (at least not in their vanilla version)

- Take home message: Use the right tool for the right job (in the right way).

Conclusion
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Questions?


