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Shallow learners are dead — Long live shallow learners!

Random Forests in the age of Deep Learning

Ronny Hansch
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From kNN to Search Trees

. Data samples x
= Pixel information, image
patch, feature vector, etc.
= Oftenx € R"

. Classification:
= Estimate class label

. Training data: Values of target

variable given e.g. class label

i DLR
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From kNN to Search Trees

. Task: Given training data, 2
estimate label of query sample

i DLR
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From kNN to Search Trees

. Task: Given training data, 2
estimate label of query sample

. kNN/Parzen Window:

— Compute distance to all \\
samples ® 5/

N

i DLR




DLR.de « Chart6 > Random Forests in the age of Deep Learning, R.Hansch > Oct 30, 2024

From kNN to Search Trees

. Task: Given training data,
estimate label of query sample

. kNN/Parzen Window:
— Compute distance to all
samples
— Select samples within
window of given size (Parzen)
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From kNN to Search Trees

. Task: Given training data, 2
estimate label of query sample

. kNN/Parzen Window:
— Compute distance to all
samples
— Select samples within
window of given size (Parzen)
— Use these samples to
estimate target variable, e.g.
class label

. Problem: Computationally " X
expensive (exhaustive search)

i DLR
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From kNN to Search Trees

. Search trees £
— Quad/Octree, KD tree, etc.
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From kNN to Search Trees

. Search trees £
— Quad/Octree, KD tree, etc. n
— Divide space recursively into e ® | o ©®,
cells . ® O
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From kNN to Search Trees

. Search trees
— Quad/Octree, KD tree, etc.
— Divide space recursively into
cells
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From kNN to Search Trees

. Search trees
— Quad/Octree, KD tree, etc.
— Divide space recursively into
cells
— Given a query, find relevant
cells
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From kNN to Search Trees

. Search trees
— Quad/Octree, KD tree, etc.
— Divide space recursively into
cells
— Given a query, find relevant
cells

£
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From kNN to Search Trees

. Search trees
— Quad/Octree, KD tree, etc.
— Divide space recursively into
cells
— Given a query, find relevant
cells
— Perform exhaustive search
in these cells ONLY

£




DLR.de < Chart 14 > Random Forests in the age of Deep Learning, R.Hansch > Oct 30, 2024

From kNN to Search Trees

. Search trees {2
— Quad/Octree, KD tree, etc.
— Divide space recursively into
cells
— Given a query, find relevant
cells
— Perform exhaustive search
in these cells ONLY

. Exact search: Leads to
equivalent results

i DLR
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From kNN to Search Trees

. Search trees £

— Quad/Octree, KD tree, etc.
— Divide space recursively into
cells

— Given a query, find relevant
cells

— Perform exhaustive search
in these cells ONLY

. Exact search: Leads to
equivalent results

. Approximation: Use samples "X,
within query cell directly

i DLR
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From Search Trees to (Random) Decision Trees

Cell construction £y
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From Search Trees to (Random) Decision Trees

. Cell construction £y

i DLR
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From Search Trees to (Random) Decision Trees

. Cell construction 2
— Simple threshold operation L
— Different threshold e ® |, ©®,
definitions (e.g. equi-sized o ¢ ¢
cells, threshold as data o ® ® o
median) lead to different O ®l o0 ®
search tree variants (e.g. 9, b o
quad-tree, k-D tree).
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®
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From Search Trees to (Random) Decision Trees

Cell construction £
— Simple threshold operation r
. ) ® o0
Decision stump: O
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From Search Trees to (Random) Decision Trees

. Cell construction 2
— Simple threshold operation

. Decision stump: ® ®
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From Search Trees to (Random) Decision Trees

. Cell construction £
— Simple threshold operation

. Decision stump: O ®




DLR.de « Chart22 > Random Forests in the age of Deep Learning, R.Hansch > Oct 30, 2024

From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees

i DLR




DLR.de « Chart33 > Random Forests in the age of Deep Learning, R.Hansch > Oct 30, 2024

From Search Trees to (Random) Decision Trees
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From Search Trees to (Random) Decision Trees

Wi L b f
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From Search Trees to (Random) Decision Trees
X
Root Node 2

Internal Node /
Split Node

, &\

La. L. o,

L : A .

Leaf /
Terminal Node
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From Search Trees to (Random) Decision Trees

Local estimate of the target 2
variable (e.g. class posterior) is
assigned to cells

i DLR
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From Search Trees to (Random) Decision Trees

Local estimate of the target 2
variable (e.g. class posterior) is
assigned to cells ® o

O

O
Results in highly non-linear, even ®
non-connected (but piecewise
constant) decision boundaries ®

"X
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From Search Trees to (Random) Decision Trees

2
Other node tests are possible: ° ® |:. e
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From Search Trees to (Random) Decision Trees

Other node tests are possible:
— Axis-aligned

— Linear

X=[x,1]eR", yeR

(N i Ty 1
t('x):o it y x.<b?,.
1 otherwise.
PO P
t(x):O if d.< I{/ X<ﬁs
- |1 otherwise.
" X

i DLR




DLR.de « Chart40 > Random Forests in the age of Deep Learning, R.Hansch > Oct 30, 2024

From Search Trees to (Random) Decision Trees

Other node tests are possible:
— Axis-aligned
— Linear

— Conic section

d+1xid+1) 1
x=[x,1]eR"™, yeR
o if XMy X<,
t(x)= .
1 otherwise.
_ |0 if b}.<§r-z//-§<b’s
t(x)= .
1 otherwise.
" X
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From Search Trees to (Random) Decision Trees

Other node tests are possible:

Spectral projection:

— AXiS'aI ig ned Selection of feature f (0 <f < F)

— Linear

— Conic section

= IRNxXNyXF c IRNxXNy

— Other data spaces than

- Image patches: x € R™"

- Non-scalar features
(histograms, categorical)

Ny

Spatial projection

i DLR
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From (Random) Decision Trees to Random Forests

Advantages

- Can deal with very heterogeneous data
— Different, data-specific types of node tests

i DLR
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From (Random) Decision Trees to Random Forests

Advantages

- Can deal with very heterogeneous data
— Different, data-specific types of node tests

- Not prone to the curse of dimensionality
— Each node only works on a very limited set of dimensions

i DLR
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From (Random) Decision Trees to Random Forests

Advantages

- Can deal with very heterogeneous data
— Different, data-specific types of node tests

- Not prone to the curse of dimensionality
— Each node only works on a very limited set of dimensions
- Very efficient
— Each sample passes maximal H nodes (H = maximal height)
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From (Random) Decision Trees to Random Forests

Advantages

- Can deal with very heterogeneous data
— Different, data-specific types of node tests

- Not prone to the curse of dimensionality
— Each node only works on a very limited set of dimensions
- Very efficient
— Each sample passes maximal H nodes (H = maximal height)

- Easy to implement
— Binary trees are one of the most basic data structures
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From (Random) Decision Trees to Random Forests

Advantages

- Can deal with very heterogeneous data
— Different, data-specific types of node tests

- Not prone to the curse of dimensionality
— Each node only works on a very limited set of dimensions

- Very efficient
— Each sample passes maximal H nodes (H = maximal height)

- Easy to implement
— Binary trees are one of the most basic data structures

- Easy to interpret
— Path through tree is a connected set of decision rules

i DLR
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From (Random) Decision Trees to Random Forests

Advantages

- Can deal with very heterogeneous data
— Different, data-specific types of node tests

- Not prone to the curse of dimensionality
— Each node only works on a very limited set of dimensions

- Very efficient
— Each sample passes maximal H nodes (H = maximal height)

- Easy to implement
— Binary trees are one of the most basic data structures

- Easy to interpret
— Path through tree is a connected set of decision rules

- Well understood

— Theoretical and practical implications of design decisions have
been researched

i DLR
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From (Random) Decision Trees to Random Forests
Disadvantages
- Optimized by greedy algorithms

— A chain of individually optimal decisions, might not lead to an
overall optimum

i DLR
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From (Random) Decision Trees to Random Forests

Disadvantages
- Optimized by greedy algorithms

— A chain of individually optimal decisions, might not lead to an
overall optimum

- The optimal solution (i.e. decision boundary) might not be part of the
model class (e.g. piece-wise linear and axis-aligned functions)
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From (Random) Decision Trees to Random Forests

Disadvantages
- Optimized by greedy algorithms

— A chain of individually optimal decisions, might not lead to an
overall optimum

- The optimal solution (i.e. decision boundary) might not be part of the
model class (e.g. piece-wise linear and axis-aligned functions)

- Prone to overfitting
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From (Random) Decision Trees to Random Forests

Disadvantages
- Optimized by greedy algorithms

— A chain of individually optimal decisions, might not lead to an
overall optimum

- The optimal solution (i.e. decision boundary) might not be part of the
model class (e.g. piece-wise linear and axis-aligned functions)

- Prone to overfitting
- Model capacity depends on amount of data
— Few samples = small trees: Only few questions can be asked.

— Many samples (might) lead to very high trees: Long processing
times, large memory footprint.

i DLR
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From (Random) Decision Trees to Random Forests

Disadvantages
- Optimized by greedy algorithms

— A chain of individually optimal decisions, might not lead to an
overall optimum

- The optimal solution (i.e. decision boundary) might not be part of the
model class (e.g. piece-wise linear and axis-aligned functions)

- Prone to overfitting
- Model capacity depends on amount of data
— Few samples = small trees: Only few questions can be asked.

— Many samples (might) lead to very high trees: Long processing
times, large memory footprint.

How to
— keep (most) of the advantages

— getting rid of (most) disadvantages?
# f e A Gl T T S R i AN TR
o / [ﬂi ﬁ £ W
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From (Random) Decision Trees to Random Forests
- Individual Random Trees
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From (Random) Decision Trees to Random Forests
- Individual Random Trees RF (T=1)
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From (Random) Decision Trees to Random Forests
- Individual Random Trees RF (T=2)
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From (Random) Decision Trees to Random Forests
- Individual Random Trees RF (T=3)
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RandEForliii LLL |Inl
A8 B 5
THO

|'\\ /I ( - )
.._‘.;f_\ \_ | /4\

Set of decision trees
. Each tree t generated from training data

. Creation of one tree independent of all other trees
. Based on random processes to produce diverse set of trees
Individual tree outcomes are fused (votlng, averaglng, ...)
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Random Forests

. Many (suboptimal) baselearners, i.e. decision trees

. Combined output on average better than individual output
. Minimization of the risk to use wrong model

. Extension of the model space

. Decreased dependence on initialization

. One name to rule them all

- Bagged Decision Trees
- Randomized Trees

- Decision Forests

- ERT, PERT, Rotation Forests, Canonical Correlation Forests,
Hough Forests, Semantic Texton Forests, ...
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Random Forests - Key questions
. Why randomization?
— How to achieve a diverse and strong ensemble?

.  What kind of node tests?
— For images, for other data spaces than R"

. How to select node tests?
— How to measure good tests?

.  What kind of target variables?
— More than a single class label?

. How to limit model capacity (tree height, tree number)?
— The more the better? What about overfitting?

. How to fuse tree decisions?
— Whom to trust?

. How to interpret results?
— Tree properties and visualization.

i DLR
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Random Forests - Why randomization?
- Individual Random Trees RF (T=3)

A 2 “X2 “X
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Random Forests - Why randomization?

[Generalization error]
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Random Forests - Why randomization?

{Generalization error] [Avg. tree strength]
/4 ( )
p(l—s°
{PE| <
52
Q__

- The stronger the trees (large s), the stronger the ensemble!
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Random Forests - Why randomization?

[Generalization error] [Avg. tree correlationJ [Avg. tree strength]

pE|< L

- The stronger the trees (large s), the stronger the ensemble!
- The more correlated the trees (large p), the weaker the ensemble!

[Difference between asking 10 persons 1 time, or 1 person 10 times.]
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Random Forests - Randomization through Bagging
Given: Training set D with |[D| = N samples.
Bagging (Bootstrap aggregating):
1. Randomly sample M data sets D_ with replacement (|[D_| = N).

2. Train M models where m-th model has only access to m-th dataset.
3. Average all models.

i DLR
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Random Forests - Randomization through Bagging

Given: Training set D with |[D| = N samples.

Bagging (Bootstrap aggregating):

1. Randomly sample M data sets D_ with replacement (|[D_| = N).

2. Train M models where m-th model has only access to m-th dataset.
3. Average all models.

Meta learning technique

- Works if small change in input data leads to large model variation

- Reduces variance (of final model), avoids overfitting.

- Leads to diverse decision trees, even if all other parameters are fixed
- Variant: Subagging = Sample without replacement

- Disadvantage: Less samples per tree (yet forest does see all samples)

i DLR
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Random Forests - Randomization through node tests

Per tree: 2 b
- Use randomized projections into °° e %o
subspaces (e.g. subset, PCA, LDA, ...) | % e |o o

Per node: N
- Select a feature randomly o e o
- Select threshold randomly
0 X

— Works only if
- Many features are available
- Each feature has many possible values

— Will prefer features with many values (e.g. real values) over
features with few values (e.g. categorical variables)

i DLR
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Random Forests - Key questions
.  Why randomization?
— How to achieve a diverse and strong ensemble?

. What kind of node tests?
— For images, for other data spaces than R"

. How to select node tests?
— How to measure good tests?

.  What kind of target variables?
— More than a single class label?

. How to limit model capacity (tree height, tree number)?
— The more the better? What about overfitting?

. How to fuse tree decisions?
— Whom to trust?

. How to interpret results?
— Tree properties and visualization.

i DLR
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RF - Holistic Feature Selection and Classification
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RF - Holistic Feature Selection and Classification
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RF - Holistic Feature Selection and Classification

Feature projection:
Selection of feature f (1 <f<F)

RNxx Ny x F RNxx Ny
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RF - Holistic Feature Selection and Classification

Feature projection:

Selection of feature f (1 <f<F) Spatial projection
KE
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RF - Holistic Feature Selection and Classification

Feature projection:

Selection of feature f (1 <f<F) Spatial projection
—
] *_,
NxxNyF
1-Point projection 2-Point projection 4-Point projection
op(R1) — op(R) op(R1) — op(Rz2) (op(R1) — op(R2)) — (op(R3) — op(R4))

i DLR
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RF - Holistic Feature Selection and Classification

Pre- Feature Post-
Data processing N Extraction processing | Label
1- Pomt prOJectlon 2-Point prOJectlon 4- Pomt prOJectlon
op(R1) — op(R) op(R1) — op(R2) (op(R1) — op(R2)) — (op(R3) — op(R4))

Op : Patch — Pixel (Scalar)
- Max. / min. value
- Central pixel
- Average

i DLR
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RF - Holistic Feature Selection and Classification

{ Image data

- Oberpfaffenhofen data set
- fully polarimetric

- E-SAR, DLR

= —= Reference data

BA =89.4%
Urban
Forest
Field

Shurbl.
Road

Urban| Forest| Field | Shrubl.

Road
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RF - Holistic Feature Selection and Classification

Pre- Feature Post-
Data processing N Extraction processing | Label
1- Pomt prOJectlon 2-Point prOJectlon 4- Pomt prOJectlon
op(R1) — op(R) op(R1) — op(R2) (op(R1) — op(R2)) — (op(R3) — op(R4))

Op : Patch — Pixel (Scalar)
- Max. / min. value
- Central pixel
- Average
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RF - Holistic Feature Selection and Classification

Pre- Feature Post-
Data processing N Extraction processing | Label
2-Point projection 4-Point projection
d(op(R1),op(R)) | | d(op(R1),0p(R2)) d(op(R1),0p(Rz2)) — d(op(Rs), op(R4))
Op : Patch — Pixel (Scalar) d : Scalar x Scalar— Scalar
- Max. / min. value - Signed / absolute difference
- Central pixel
- Average

i DLR
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RF - Holistic Feature Extraction and Classification

Pre-
Data B Label
1-Point prOJectlon 2- P0|t rOJectlon 4-Point rOJectlon
d(op(R1),0p(R)) || d(op(R1),0p(R2)) d(op(R1),0p(Rz2)) — d(op(Rs), op(R4))
Op : Patch — Pixel (3-Vector) d : 3-Vector x 3-Vector — Scalar

- Max. / min. grey value - Euclidean distance in any color space

- Central pixel - Difference in hue

- Average
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RF - Holistic Feature Extraction and Classification

Pre-
Data O Label
1-Point projection | | 2-Point projection 4-Point projection
d(op(R1),0p(R)) | | d(op(R1),op(Rz)) d(op(R1),0p(Rz2)) — d(op(Rs), op(R4))
Op : Patch — Pixel (Matrix) d : Matrix x Matrix — Scalar

- Max. / min. span - Difference of polarimetric features

- Central pixel - General matrix distances

- Average - Polarimetric distance measures

Skipping the real world: Classification of POISAR images without explicit feature extraction,
R. Hansch, O. Hellwich, ISPRS Journal of Photogrammetry and Remote Sensing, 2017
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RF - Holistic Feature Extraction and Classification

T —= Reference data

i
|

= explicit feature extraction
BA =89.4%

—= RF without
—~ explicit feature extraction
= BA=387.5%

o \
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Summary: Projection-based Random Forests

1. Y: Select regions within a patch
— Random size and position

i DLR
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Summary: Projection-based Random Forests

1. Y: Select regions within a patch
— Random size and position

2. Q. Select / compute pixel value

— Random, data type dependent operator
— HS signature: e.g. min/max power
— Pol. cov. matrix: e.g. min/max pol. entropy

S0
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Summary: Projection-based Random Forests

3.d:

Select regions within a patch
— Random size and position

Select / compute pixel value

— Random, data type dependent operator
— HS signature: e.g. min/max power
— Pol. cov. matrix: e.g. min/max pol. entropy

Apply distance measure

— Randomly selected

— Data type dependent

— HS signature: e.g. cosine similarity
— Pol. cov. matrix: e.g. Bartlett distance

s
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Summary: Projection-based Random Forests

1. Y: Select regions within a patch
— Random size and position

2. Q. Select / compute pixel value

— Random, data type dependent operator
— HS signature: e.g. min/max power
— Pol. cov. matrix: e.g. min/max pol. entropy

3. d: Apply distance measure
— Randomly selected
— Data type dependent
— HS signature: e.g. cosine similarity
— Pol. cov. matrix: e.g. Bartlett distance 0,

s

4. Compare to scalar (split threshold)
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Summary: Projection-based Random Forests

e Can be directly applied to any kind of
data

e Learns features directly from the data

e Project local patches into scalars

e Direct connection between scale of
the projection and access to context
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Random Forests - Split point selection - Unsupervised
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Random Forests - Split point selection - Unsupervised

0.03

0.03

0.03 T T

N
o

-
o

Tree Height

=3
o

5

10 15 20
Tree Number

N
o

Tree Height
o

5 10 15 20 25

0.025+

0.015+

0.01~

0.005+

0.9

2 0.8

0.7

N
o

0.6
0.5

=y
(8]

Tree Height

04
- 03

— 0.2
0.1

15 20

Tree Number Tree Number
Interval center Mean value Median value
B min(D) + max(D) _ 1 - ;

2

0 = median(D)




DLR.de « Chart87 > Random Forests in the age of Deep Learning, R.Hansch > Oct 30, 2024

Random Forests - Split point selection - Supervised

Max. drop of impurity: § = argmin [I(n) — PpI(ny) — PrI(ng)]
g

n Set of samples in current node

N, e Set of samples in left / right child node

PL/R Fraction of samples that are in left / right child node
1 A measure of impurity

— Find a test function that splits the data into two subsets that are as
“pure” as possible regarding the class distribution (i.e. contain only
samples of a single class in the best case)
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Random Forests - Split point selection - Supervised
~Max. drop of impurity: 6 = argmin [I(n) — PrI(ny) — PrI(nRr)]
| p
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Random Forests - Split point selection

0.25 -

0.2-

0.15 -

0.1-

0.05 -

Other possibilities available
— Intervals, structured label spaces,
inter-class split

Need for computational efficiency
since selection is performed
thousand to million times during
training

Avoid exhaustive search
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Random Forests - Key questions
.  Why randomization?
— How to achieve a diverse and strong ensemble?

.  What kind of node tests?
— For images, for other data spaces than R"

. How to select node tests?
— How to measure good tests?

.  What kind of target variables?
— More than a single class label?

. How to limit model capacity (tree height, tree number)?
— The more the better? What about overfitting?

. How to fuse tree decisions?
— Whom to trust?

. How to interpret results?
— Tree properties and visualization.
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Random Forests - Node optimization

. Generate m split candidates
— “Traditionally”: m = v/d, where d is data dimension
— “Modern” approaches: m =~ 10°
— Usually even m = 2 leads to performance increase
— Trade-off between high performance and high correlation
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Random Forests - Node optimization

Generate m split candidates

— “Traditionally”: m = v/d, where d is data dimension

— “Modern” approaches: m =~ 10°

— Usually even m = 2 leads to performance increase

— Trade-off between high performance and high correlation

Select best split, reject all others
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Random Forests - Node optimization

. Generate m split candidates
— “Traditionally”: m = v/d, where d is data dimension
— “Modern” approaches: m =~ 10°
— Usually even m = 2 leads to performance increase
— Trade-off between high performance and high correlation

. Select best split, reject all others

. Measure optimality of a split
— Classification: “Purity” of child nodes (e.g. Gini, entropy, etc.)
— Regression: e.g. variance

— In general: How much better is the estimation of the child nodes
(as a weighted average) than parent nodes?
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Random Forests - Node optimization
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Random Forests - Node optimization
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Random Forests - Key questions
.  Why randomization?
— How to achieve a diverse and strong ensemble?

.  What kind of node tests?
— For images, for other data spaces than R"

. How to select node tests?
— How to measure good tests?

.  What kind of target variables?
— More than a single class label?

. How to limit model capacity (tree height, tree number)?
— The more the better? What about overfitting?

. How to fuse tree decisions?
— Whom to trust?

. How to interpret results?
— Tree properties and visualization.
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Random Forests - Regression: Colorization

Sensor to sensor transcoding, e.g. grayscale to color

Color Images

Grayscale Image

~~1

Colorized Image
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Random Forests - Regression: Colorization

- Data given as intensity image g

- Target is (a, b) chrominance vector of the Lab color space
— Leaf information are 2D histograms
— Combined by averaging
— Final result is the (a,b) vector with highest probability =

— Given intensity will serve as luminance L =)
- Node optimization: Minimize variance
— Create child nodes with “pure” colors
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Random Forests - Regression: Colorization

- Data given as intensity image

- Target is (a, b) chrominance vector of the Lab color space
— Leaf information are 2D histograms
— Combined by averaging
— Final result is the (a,b) vector with highest probability
— Given intensity will serve as luminance L

- Node optimization: Minimize variance
— Create child nodes with “pure” colors

;‘r‘f o b %
- Unbalanced data requires implicit data rebalancing - | , |

— Use weighted sums (variance, histograms) where
the weight is inversely proportional to occurrence.
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Random Forests - Regression: Colorization

Reference & Input

-
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Random Forests - Regression: Colorization

Results (RF trained on a few topic- speC|f|c |mages)
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Random Forests - Regression: Colorization

DL results (ConvNet trained on large image database)
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Random Forests - Key questions
.  Why randomization?
— How to achieve a diverse and strong ensemble?

. What kind of node tests?
— For images, for other data spaces than R"

. How to select node tests?
— How to measure good tests?

.  What kind of target variables?
— More than a single class label?

. How to limit model capacity (tree height, tree number)?
— The more the better? What about overfitting?

. How to fuse tree decisions?
— Whom to trust?

. How to interpret results?
— Tree properties and visualization.
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Random Forests — Interpretation

Test frequency of all features
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- Color feature
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Random Forests — Interpretation

Test frequency of all features Selection frequency of all features
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Random Forests — Interpretation: Visualization

C | @ localhost:2000 %
Random Forest Visualization
~/dev/rfvis/data/grid-20k-1 . .
Forest . . .
Strength 0.184957 . . . ‘
Number of Trees 30 . . . . .
Number of Samples 13329 . .
Selected Tree . .
° “ o% ° o
7
Out-of-bag error 0.278413 . . ;
Tree Depth . B Save as SVG
4 MaxX © Previous Next ©
Trunk Length
120
Leaf
D #2315255808
Color  Path Depth 25
Impurity 0
Branch Color
Class Distribution
Impurity had
[ | city 0
Leaf Color
. streets 0
5 v
Impurity . forest 0
field 0
. shrubland 92

'O Reset Zoom B Save as SVG

Colorful Trees: Visualizing Random Forests for Analysis and Interpretation,
R. Hansch, P. Wiesner, S. Wendler, O. Hellwich, IEEE Winter Conf. on Applications of Computer Vision, 2019
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Random Forests — Interpretation: Forest Overview

s

? \% \l#‘ ‘%V - Arangement of trees in 2D space

@Ys ::?" -\.‘é,&‘ represents correlation of their decisions

? ? - Trees with similar structure are in
? % '“é spatial proximity (high correlation)
.‘{%’“‘ - Allows a fast assessment of individual
tree strength as well as tree similarity
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Random Forests — Interpretation: Detailed analysis

Tracking of the path of
indivi-dual samples through the
tree
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Random Forests — Interpretation: Tree Topology

Threshold as median Uniformly sampled threshold
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Random Forests — Interpretation: Leaf information

Class assignment ,Purity”, e.g. entropy of
the class posterior

Threshold via grid-search
(highly optimized)
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Random Forests — Interpretation: Consolidation nodes

Threshold via grid-search
(weakly optimized)
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Random Forests — Advanced Concepts: Stacked RF

] %,
S
Reference o ¥ & o
. SECIEE TR
Result

QOO0
& 0 @ 9
! o 8! —;—_!; ; .
RF Posterior Posterior RF Posterior RF Posterior
f Level 0 * Level 1 Level L-1 Level L

Classification of PoISAR Images by Stacked Random Forests,
R. Hansch, O. Hellwich, ISPRS International Journal of Geo-Information, 2018
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Random Forests — Advanced Concepts: Stacked RF

Image detail
Reference
Level 1
BA = 86.8%
Estimate
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Random Forests — Advanced Concepts: Stacked RF

Image detail
Reference
Level 2
BA = 88.6%
. Estimate
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Random Forests — Advanced Concepts: Stacked RF

Image detail

Level 3

BA = 89.5%
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Random Forests — Advanced Concepts: Stacked RF

Level 4

BA =90.0%
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Random Forests — Advanced Concepts: Stacked RF

Image detail

Reference
Level 5

BA =90.4%

Estimate
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Random Forests — Advanced Concepts: Stacked RF

Level 6

BA =90.5%
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Random Forests — Advanced Concepts: Stacked RF

Image detail
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Random Forests — Advanced Concepts: Stacked RF

Level 8

BA =90.5%
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Random Forests — Advanced Concepts: Stacked RF

Image detail
Reference
Level 9
BA = 90.6%
Estimate
Uncertainty
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Random Forests — Advanced Concepts: Stacked RF

Level 10

BA =90.7%
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But what about Deep Learning?

Sentinel-1 radar

Y

Exploiting GAN-Based SAR to Optical Image Transcoding for Improved Classification via Deep Learning
A. ﬁ; O. D’Hondt, S. Valade, R. énsch O. Hellwc, ij‘%ﬁR 2018
DLR |
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But what about Deep Learning?

Bl (Ensemble) Random Forest
B (Deep Learning) ConvNet 1
B (Deep Learning) ConvNet 2

Accuracy

Full 1/2 1/4 1/8 1/16
Amount of training data used

Exploiting GAN-Based SAR to Optical Image Transcoding for Improved Classification via Deep Learning
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Self-supervised learning via transcoding

Sentinel-2 optical

Sentinel-1 radar

....... > GAN
“transcoding

Classification w.
GAN-features
"pre-trained"

Exploiting GAN-Based SAR to Optical Image Transcoding for Improved Classification via Deep Learning

A. ﬁ; O. D’Hondt, S. Valade, R. Hdnsch, O. Hllwc, i]{%\é\R 2018
DLR " =
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Self-supervised learning via transcoding

B (from scratch) Random Forest

B (from scratch) ConvNet: U-net

I (from scratch) ConvNet: generator like

1 (pre trained) last layers retrained (proposed)

B (pre trained) upsampling branch retrained (proposed)
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Exploiting GAN-Based SAR to Optical Image Transcoding for Improved Classification via Deep Learning
A. . O. D’Hondt, S. Valade, R. Hdénsch, O. Hellwich, ﬂ/S_AR 2018
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Conclusion

- Deep Learning works! Differentiable learning won’t go away for the next years.
- But (modern!) shallow learners are still of importance.

- They are competitive and sometimes even superior to deep learners.

- RF (and other shallow learners) scale less well with large datasets

- Decision trees are not differentiable (at least not in their vanilla version)

- Take home message: Use the right tool for the right job (in the right way).
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