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Winners ImageNet Large Scale Visual Recognition Challenge
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= Image from Stanford CS231n Lecture 9, Fei-Fei Li
http://cs231n.stanford.edu/slides/2021/1lecture_9.pdf


http://cs231n.stanford.edu/slides/2021/lecture_9.pdf
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= Image from An Analysis of Deep Neural Network Models for Practical Applications,
Canziani et al, 2017



Efficiency
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Total amount of compute in teraflops/s-days used to train to AlexNet level performance.
Lowest compute points at any given time shown in blue, all points measured shown in
gray.

Image from https://openai.com/blog/ai-and-efficiency/


https://openai.com/blog/ai-and-efficiency/

Semantic Segmentation = Semantic Segmentation is the task of classifying every pixel of an image with an object

class.

= Often including a background class.




Dataset: Cityscapes

» 30 classes

» 5000 annotated images with fine
annotation

» 20000 annotated images with coarse
annotations




Dataset: COCO Common Objects in Context
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1.5 million object instances
80 object categories

91 stuff categories

330K images (>200K labeled)



Semantic Segmentation: sliding window?
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Semantic Segmentation: without downsampling?




Encoder-Decoder-Architecture

= Image from Learning Deconvolution Network for Semantic Segmentation, Noh et al, ICCV
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Image from Learning Deconvolution Network for Semantic Segmentation, Noh et al, ICCV
2015



Deconvoluions H H
= Transpose convolution, deconvolution

= stride 2, pad 1, the other way

= Image from Learning Deconvolution Network for Semantic Segmentation, Noh et al, ICCV
2015

Convolution Deconvolution



Encoder-Decoder-Architecture

= Image from Learning Deconvolution Network for Semantic Segmentation, Noh et al, ICCV
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UNet/Segnet .

= Image from U-Net: Convolutional Networks for Biomedical Image Segmentation,
Ronnenberger et al, MICCAI 2015

= SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation,
Badrinarayanan et al, TPAMI 2017
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Pyramid Pooling

(a) Input Image
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(b) Feature Map

(¢) Pyramid Pooling Module

(d) Final Prediction

= Image from Pyramid Scene Parsing Network, Zhao et al, CVPR 2017



Pyramid Pooling: DeeplLabv3+
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- N = Image from Encoder-Decoder with Atrous Separable Convolution for Semantic Image
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Spatial Pyramid Pooling Segmentation, Chen et al, ECCV 2018
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Object Detection = Image from The PASCAL Visual Object Classes Challenge: A Retrospective, Everingham

et al, IJCV 2014




Dataset: PASCAL Visual Object Classes « Pascal VOC (DPM 33 6%)

> 20 classes
» 11k annotated images
» 27k annotated objects




Int ti Uni . . .
prersection over Hhion = Default threshold was 0.5 for a long time but is now often higher.

Detection is correct if
intersection/union > threshold




Recall and Precision

recision — #(correct detections) Il object
P ) /#(all objects = Image from The PASCAL Visual Object Classes Challenge: A Retrospective, Everingham
recall = #(correct detect:ons)/#(a// detections) et al, 1JCV 2014

Average Precision: area under PR curve for specific class
mean Average Precision: AP averaged over all classes
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j D ion: i i lity? . .
Object Detection: output dimensionality = How would the head of this network look like?

= Image from The PASCAL Visual Object Classes Challenge: A Retrospective, Everingham
et al, 1IJCV 2014




R-CNN = Same author as DPM.

= Sliding window as in DPM. But NN much slower as SVM, therefore they used region
proposals (2k).

= Image from Rich feature hierarchies for accurate object detection and semantic
R-CNN: Regtons Wlth CNNfeatures segmentation, Girshick et al, CVPR 2014

I
: > person" yes.
tvmonltor‘? no.

1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions




Region Proposals

= Image from Selective Search for Object Recognition, Uijlings et al, IJCV 2013




R-CNN = Network also needs to predict bounding box parameters (size and offset from patch
center).
= Non maximum suppression in prediction space.
. . = Often some high level reasoning (coherence in object relations).
R-CNN: Regions with CNN features _ _ _
. = mAP for Pascal VOC improved to 53% with AlexNet as ConvNet and 62% with VGG

(from 33% DPM)

: = Image from Rich feature hierarchies for accurate object detection and semantic

segmentation, Girshick et al, CVPR 2014

1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions




Fast-RCNN .

= Image from Talk at ICCV 2015 by Ross Girshick
https://dl.dropboxusercontent.com/s/v1lyrkgd8nz8gy5l/fast-rcnn.pdf7d1=0

Apply bounding-box regressors

Classify regions with SVMs Softmax classifier Bounding-box regressors

Forward each region Fully-connected layers
ConvNet through ConvNet t . .
/7 7 /7 “RolPooling” (single-level SPP) layer
ConvNet
Regions of @convs" feature map of image
A Warped image regions Interest (Rols)

1 from a proposal
method Forward whole image through ConvNet

Regions of Interest (Rol) ConvNet
from a proposal method

(~2k)

Input image

Input image


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Faster-RCNN

. classifier
g

Rol pooling

Region Proposal Network,

feature maps

conv layers /

= Region proposal is now the expensive step in Fast-RNN

= Solution: Do region proposal in feature map.



YOLO: You Only Look Once
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= Image from You Only Look Once:Unified, Real-Time Object Detection, Redmon et al,




YOLO: You Only Look Once
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= Newer versions of YOLO have multiple detections per cell for different object sizes.

= Image from Ancient Secrets of Computer Vision Lecture 18, Joseph Redmon



YOLO: loss = weighted loss, binary and multi-class cross entropy, MSE

= What would happen without conditional probability?

L = a1Ljocalization + O42»C'object confidence + 3L classification
Liocalization - Foot mean squared error
ﬁobject confidence - binafy Cross entropy

L classification - Multi — class cross entropy



Why not both? Instance Segmentation




Mask R-CNN

= Image from Mask R-CNN, He et al, ICCV 2017




Mask R-CNN

= Image from Mask R-CNN, He et al, ICCV 2017




Mask R-CNN

= Image from Mask R-CNN, He et al, ICCV 2017




Generalization

= Depth adds complexity in training.
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Neural Networks are lazy

i.i.d.

domain adversarial
shift examples distortions pose texture background
e.g. Wang'18 Szegedy ‘13  e.g. Dodge ‘19 Alcorn ‘19 Geirhos *19 Beery ‘18
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= Image from Shortcut Learning in Deep Neural Networks, Geirhos et al, Nature Machine
Intelligence 2020



Neural Networks are lazy
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= Image from Shortcut Learning in Deep Neural Networks, Geirhos et al, Nature Machine
Intelligence 2020



Investigate decisions: partial occlusion

(a) Input Image

True Label: Pomeranian

(b) Layer 5, strongest feature map

(c) Layer 5, strongest

feature map projections

(d) Classifier, probability
of correct class

(e) Classifier, most
probable class

True Label: Afghan Hound
o=t

W Alghan hound

B Neck brace

= Image from Visualizing and Understanding Convolutional Networks, Zeiler & Fergus,
ECCV 2014



Investigate decisions: image gradient

= Image from Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps, Simonyan et al, 2013

~
ﬁ




Investigate decisions: relevance propagation

Horse-picture from Pascal VOC data set
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= Explain the output, not the local variation.

= Image from Unmasking Clever Hans Predictors and Assessing What Machines Really
Learn, Lapuschkin et al, Nature Communications 2019



