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Gradient D t . . .. . . .
radient Descen = The introduced formulation for Logistic Regression has no analytical solution.

= We can search for minima by walking on the error surface in the direction of steepest
decent.
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p(clx) = y(x) = o(Wx), oi(x) = W
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Gradient D t . .. . .
radient escen » We start at a random point and search for a minimum by walking on the error surface in

the direction of steepest decent.




Gradient Descent = For the error E(©) blue, the gradient points into the direction of steepest ascent.



Gradient Descent . T R . .
' = Given a random initialization for # we can evaluate the derivative and move into opposite

direction.



Gradient Descent = We repeat the procedure at the new 6.



Gradient Descent = We repeat the procedure at the new 6.



Gradient Descent = We repeat the procedure at the new 6.



Gradient Descent = And end up at a local minimum.



Gradient Descent = We can write the update step formally including the learning rate (step size) 7.

= Whereas V is the gradient operator.
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Stochastic Gradient Descent

E(6) = Y E(6)

Oiv1 =0 =V Y Ei(6)
j

The error function includes a sum over all data points.

If we use all data points for the computation of the gradient (batch methods) there would
be better ways of doing that than gradient descent.

Furthermore, the size of the data set often would make it very expensive to use all data
points.

However what we usually do when training neural networks is online learning.

This means we use only one sample or a subset of samples j (mini-batch) at a time.



Stochastic Gradient Descent

» How to choose samples? — Draw randomly without replacement.

» How many samples?
— In CV often as many as possible (VRAM limiting factor)
— Higher batch size — less gradient noise — higher learning rate n

» However, gradient noise allows to escape local optima!
— Too big batch sizes possible.



Gradient Descent for Logistic Regression
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Gradient Descent for Logistic Regression
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Whats wrong?
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So far we solved this with feature engineering.

= We mapped the images from the highly complex pixel space using e.g. SIFT or HOG into
a feature space.

= And afterwards hoped for a good classification result in feature space using e.g. SVM.




C | th ings? ) . . . .
an we fearn these mappings = Let's add another mapping into our Logistic Regression!




Can we learn these mappings? . . .
pping = The vector h is representation in learned feature space.

— It can have any dimensionality.

= ¢ is called the activation function.
— It needs to be non-linear. A purely linear mapping into a new feature space wouldn’t
help.




Can we learn these mappings? . . .
pping = The vector h is representation in learned feature space.

— It can have any dimensionality.

= ¢ is called the activation function.
— It needs to be non-linear. A purely linear mapping into a new feature space wouldn’t
help.




C | th ings? Artificial N | Network . . . .
an we fearn these mappings? = Artificial Reural Hetwor » This is what is called an Artificial Neural Network with one hidden layer.

= It's also sometimes called a Multilayer Perceptron (MLP).




Can we learn these mappings? — Artificial Neural Network
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https://en.wikipedia.org/wiki/Artificial_neuron#/media/File:Neuron3.svg

ings? k . . . . L .
Can we learn these mappings? — Deep Neural Networ = Adding more hidden layers to this, following the same principle, leads us to what is called

deep learning.




But wait. What's the derivati f this? .. . .
ut e aks the derivative of this = Manually deriving the derivative? Puhh ...

= Symbolic derivation leads to expression swell.

= Both are restricted to model definitions with closed-form expressions.




But it. What's the derivati f this? . . . . . . . .
utwal ats the dervative of this = ¢; is the unit vector in the ith direction and h is a small positive number.

= We could numerically evaluate the gradient for every weight.
— Makes a full evaluation of the network for every weight necessary.

OE(w) _ E(w+ hej) — E(w)
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But wait. What's the derivative of this? — Backpropagation

» Fortunately, somebody figured, we could do this using the chain rule!

» The approach was developed many times but
is widely used in Machine Learning mostly because of
Learning representations by back-propagating errors.
David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams; Nature; 1986



Backpropagation = Let's look at the computational graph for the function e = (a+ b)(b + 1)



Backpropagation = A forward pass through this graph for a=2 and b = 3.
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Backpropagation = We can assign the partial derivative to each edge of the graph.




Backpropagation = After a forward pass through the network, we can assign a value to all of the partial
derivatives by doing what is called a backward pass.
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Backpropagation
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= |f we multiply the values of the partial derivatives of the nodes from output to parameter,
we get the partial derivative of the full network with respect to this parameter.

= Which is nothing else than the application of the chain rule.




Back i .
ackpropagation = |f there are multiple paths from output to parameter, we have to sum up all the

derivatives at every node before propagating the further.

= This also corresponds to the chain rule in the multi variate case.
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Backpropagation = Every node needs to implement a function and the partial derivatives of that function

with respect to its inputs.
— The values of the partial derivatives of the network with respect to all parameters for a

given input, can be computed with one forward and one backward pass.




Backpropagation = Activations (node output) of all layers have to be kept in memory for the backward path!
— High memory consumption of the network during training.
— (Yes, Backprop is dynamic programming.)

= Add-nodes distribute gradient equally.

= Multiply-nodes backpropagate their inputs as gradients.

? = What does that mean e.g. for the Wx operation?
— Big input, big gradient on the weights!
3 5 — Preprocessing of input data matters for gradient flow!
{ 4 20 — To understand and monitor gradient flow is crucial for successful training of neural
networks.
0« 4




Activation function
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= Let's have a look at possible activation functions.



Overfittin a1
& = Deep neural networks have millions of parameters.

“With great power comes great overfitting" (Joseph Redmon) = They can learn to fit almost everything. But that's often not what you want.




Bias and Variance in deep networks = When fitting a model with a gradient descent method, we should always look at the error

on training and validation sets over training iteration.

A = High bias

o — Increase model complexity
— framning set

Error

= High variance
validation set — More data and/or regularization

= In deep learning it's less of a trade-off between bias and variance.
— We can increase model complexity accompanied with more data/regularization until
bias is close to zero, without increasing variance much.

training iterations



Regularization
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Early stopping
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Weight regularization
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Dropout

» Data augmentation

v

Batch normalization



