
Machine Learning 3/3
Lecture 09

Computer Vision for Geosciences

2021-05-07

1 / 78

Table of Contents

1. Recap Principal Component Analisis (PCA)
1. toy example
2. Sentinel-2 example

2. Support Vector Machine (SVM)
1. description
2. application examples

2 / 78

Table of Contents

1. Recap Principal Component Analisis (PCA)
1. toy example
2. Sentinel-2 example

2. Support Vector Machine (SVM)
1. description
2. application examples

3 / 78

Recap Principal Component Analisis (PCA)
1. toy example

PCA toy example
We have several wine bottles in our cellar, 11 features (alcohol, acidity, etc.) describe its quality.
Which features best define it, are there related features (i.e. covariant) which are redundent?

⇒ PCA allows to summarize each wine with fewer characteristics
⇒ reduce data dimensions

⇒ PCA does not select some features and discards others,
instead it defines new features (using linear combinations of available features)

which will best represent wine variability

4 / 78

Recap Principal Component Analisis (PCA)
1. toy example

PCA toy example
We have several wine bottles in our cellar, 11 features (alcohol, acidity, etc.) describe its quality.
Which features best define it, are there related features (i.e. covariant) which are redundent?

⇒ PCA allows to summarize each wine with fewer characteristics
⇒ reduce data dimensions

⇒ PCA does not select some features and discards others,
instead it defines new features (using linear combinations of available features)

which will best represent wine variability

5 / 78

Recap Principal Component Analisis (PCA)
1. toy example

PCA toy example
We have several wine bottles in our cellar, 11 features (alcohol, acidity, etc.) describe its quality.
Which features best define it, are there related features (i.e. covariant) which are redundent?

⇒ PCA allows to summarize each wine with fewer characteristics
⇒ reduce data dimensions

⇒ PCA does not select some features and discards others,
instead it defines new features (using linear combinations of available features)

which will best represent wine variability

6 / 78

Recap Principal Component Analisis (PCA)
1. toy example

⇒ Example with 2 variables: compute covariance matrix → find largest eigenvalues & eigenvectors → project
(eigenvectors represent the directions of the largest variance of the data, eigenvalues represent the magnitude of this variance in those directions)

→ low variance (dispersion) of the data along the 2nd eigenvector
⇒ the 2 original features (var x, var y) could be reduced to 1 feature, i.e. the projection on the 1st eigenvector

7 / 78

Recap Principal Component Analisis (PCA)
1. toy example

⇒ Example with 2 variables: compute covariance matrix → find largest eigenvalues & eigenvectors → project
(eigenvectors represent the directions of the largest variance of the data, eigenvalues represent the magnitude of this variance in those directions)

→ low variance (dispersion) of the data along the 2nd eigenvector
⇒ the 2 original features (var x, var y) could be reduced to 1 feature, i.e. the projection on the 1st eigenvector

8 / 78

Recap Principal Component Analisis (PCA)
1. toy example

⇒ Example with 2 variables: compute covariance matrix → find largest eigenvalues & eigenvectors → project
(eigenvectors represent the directions of the largest variance of the data, eigenvalues represent the magnitude of this variance in those directions)

→ low variance (dispersion) of the data along the 2nd eigenvector
⇒ the 2 original features (var x, var y) could be reduced to 1 feature, i.e. the projection on the 1st eigenvector

9 / 78

Recap Principal Component Analisis (PCA)
1. toy example

⇒ Example with 2 variables: compute covariance matrix → find largest eigenvalues & eigenvectors → project
(eigenvectors represent the directions of the largest variance of the data, eigenvalues represent the magnitude of this variance in those directions)

→ low variance (dispersion) of the data along the 2nd eigenvector
⇒ the 2 original features (var x, var y) could be reduced to 1 feature, i.e. the projection on the 1st eigenvector

10 / 78

Recap Principal Component Analisis (PCA)
1. toy example

⇒ Do the same with the 11 features
→ search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?

11 / 78

Recap Principal Component Analisis (PCA)
1. toy example

⇒ Do the same with the 11 features
→ search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?

12 / 78

Recap Principal Component Analisis (PCA)
1. toy example

⇒ Do the same with the 11 features
→ search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?

13 / 78

Recap Principal Component Analisis (PCA)
1. toy example

⇒ Do the same with the 11 features
→ search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?

Principal Component 1

PC 1 = 0.49*feature0 + -0.24*feature1 + 0.46*feature2 + 0.15*feature3 + 0.21*feature4 + -0.04*feature5 + 0.02*feature6 + 0.40*feature7 + -0.44*feature8 + 0.24*feature9 + -0.11*feature10

14 / 78

Recap Principal Component Analisis (PCA)
1. toy example

⇒ Do the same with the 11 features
→ search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?

Principal Component 1

PC 1 = 0.49*feature0 + -0.24*feature1 + 0.46*feature2 + 0.15*feature3 + 0.21*feature4 + -0.04*feature5 + 0.02*feature6 + 0.40*feature7 + -0.44*feature8 + 0.24*feature9 + -0.11*feature10

15 / 78

Recap Principal Component Analisis (PCA)
1. toy example

⇒ Do the same with the 11 features
→ search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?
Q3: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?

Prediction accuracy of wine quality (classification task using KNN):
• using 11 original features ⇒ accuracy = 0.79
• using 6 first principal components ⇒ accuracy = 0.78

⇒ PCA can successfully reduce data dimensionality,
and achieve (almost) the same prediction accuracy with fewer features

⇒ how about using PCA on images?
→ Sentinel-2 example: reduce a space with 20,000×4×15×15 pixels (900 dimensions)

16 / 78

Recap Principal Component Analisis (PCA)
1. toy example

⇒ Do the same with the 11 features
→ search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?
Q3: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?

Prediction accuracy of wine quality (classification task using KNN):
• using 11 original features ⇒ accuracy = 0.79
• using 6 first principal components ⇒ accuracy = 0.78

⇒ PCA can successfully reduce data dimensionality,
and achieve (almost) the same prediction accuracy with fewer features

⇒ how about using PCA on images?
→ Sentinel-2 example: reduce a space with 20,000×4×15×15 pixels (900 dimensions)

17 / 78

Recap Principal Component Analisis (PCA)
1. toy example

⇒ Do the same with the 11 features
→ search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?
Q3: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?

Prediction accuracy of wine quality (classification task using KNN):
• using 11 original features ⇒ accuracy = 0.79
• using 6 first principal components ⇒ accuracy = 0.78

⇒ PCA can successfully reduce data dimensionality,
and achieve (almost) the same prediction accuracy with fewer features

⇒ how about using PCA on images?
→ Sentinel-2 example: reduce a space with 20,000×4×15×15 pixels (900 dimensions)

18 / 78

Recap Principal Component Analisis (PCA)
1. toy example

⇒ Do the same with the 11 features
→ search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?
Q3: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?

Prediction accuracy of wine quality (classification task using KNN):
• using 11 original features ⇒ accuracy = 0.79
• using 6 first principal components ⇒ accuracy = 0.78

⇒ PCA can successfully reduce data dimensionality,
and achieve (almost) the same prediction accuracy with fewer features

⇒ how about using PCA on images?
→ Sentinel-2 example: reduce a space with 20,000×4×15×15 pixels (900 dimensions)

19 / 78

Recap Principal Component Analisis (PCA)
2. Sentinel-2 example

Sentinel-2 example ⇒ apply PCA on satellite image crops

A crop of 900 pixels (4×15×15) can be reduced fairly accurately to 32 points,
i.e., a projection in a 32-dimensional space (first 32 pcs)

This dimensionality-reduction of the dataset allows us to feed it to a classifying algorithm

20 / 78

Recap Principal Component Analisis (PCA)
2. Sentinel-2 example

Sentinel-2 example ⇒ apply PCA on satellite image crops

A crop of 900 pixels (4×15×15) can be reduced fairly accurately to 32 points,
i.e., a projection in a 32-dimensional space (first 32 pcs)

This dimensionality-reduction of the dataset allows us to feed it to a classifying algorithm

21 / 78

Recap Principal Component Analisis (PCA)
2. Sentinel-2 example

Sentinel-2 example ⇒ apply PCA on satellite image crops

A crop of 900 pixels (4×15×15) can be reduced fairly accurately to 32 points,
i.e., a projection in a 32-dimensional space (first 32 pcs)

This dimensionality-reduction of the dataset allows us to feed it to a classifying algorithm

22 / 78

Recap Principal Component Analisis (PCA)
2. Sentinel-2 example

Sentinel-2 example ⇒ apply PCA on satellite image crops

A crop of 900 pixels (4×15×15) can be reduced fairly accurately to 32 points,
i.e., a projection in a 32-dimensional space (first 32 pcs)

This dimensionality-reduction of the dataset allows us to feed it to a classifying algorithm

23 / 78

Recap Principal Component Analisis (PCA)
2. Sentinel-2 example

Sentinel-2 example ⇒ apply PCA on satellite image crops

A crop of 900 pixels (4×15×15) can be reduced fairly accurately to 32 points,
i.e., a projection in a 32-dimensional space (first 32 pcs)

This dimensionality-reduction of the dataset allows us to feed it to a classifying algorithm

24 / 78

Recap Principal Component Analisis (PCA)
2. Sentinel-2 example

Sentinel-2 example ⇒ apply PCA on satellite image crops

A crop of 900 pixels (4×15×15) can be reduced fairly accurately to 32 points,
i.e., a projection in a 32-dimensional space (first 32 pcs)

This dimensionality-reduction of the dataset allows us to feed it to a classifying algorithm

25 / 78

Recap Principal Component Analisis (PCA)
2. Sentinel-2 example

Sentinel-2 example ⇒ apply PCA on satellite image crops

A crop of 900 pixels (4×15×15) can be reduced fairly accurately to 32 points,
i.e., a projection in a 32-dimensional space (first 32 pcs)

This dimensionality-reduction of the dataset allows us to feed it to a classifying algorithm

26 / 78

Recap Principal Component Analisis (PCA)
2. Sentinel-2 example

Sentinel-2 example ⇒ apply PCA on satellite image crops

A crop of 900 pixels (4×15×15) can be reduced fairly accurately to 32 points,
i.e., a projection in a 32-dimensional space (first 32 pcs)

This dimensionality-reduction of the dataset allows us to feed it to a classifying algorithm

27 / 78

Recap Principal Component Analisis (PCA)
2. Sentinel-2 example

Sentinel-2 example ⇒ apply PCA on satellite image crops

A crop of 900 pixels (4×15×15) can be reduced fairly accurately to 32 points,
i.e., a projection in a 32-dimensional space (first 32 pcs)

This dimensionality-reduction of the dataset allows us to feed it to a classifying algorithm

28 / 78

Recap Principal Component Analisis (PCA)
2. Sentinel-2 example

Sentinel-2 example ⇒ apply PCA on satellite image crops

A crop of 900 pixels (4×15×15) can be reduced fairly accurately to 32 points,
i.e., a projection in a 32-dimensional space (first 32 pcs)

This dimensionality-reduction of the dataset allows us to feed it to a classifying algorithm

29 / 78

Recap Principal Component Analisis (PCA)
2. Sentinel-2 example

Classifying algorithms?

• k-Nearest Neighbor (kNN) (last week lecture)
⇒ label images by comparing them to (annotated) images from the training set
⇒ disadvantages:

• classifier needs to keep all training data for future comparisons with the test data
→ inefficient when datasets become very large (≥GB)

• classifying a test image is expensive since it requires a comparison to all training images

• Support Vector Machines (this week lecture)
⇒ parametric linear classification method
⇒ advantages:

• once the parameters are learnt, training data can be discarded
• classification (prediction) for a new test image is fast → simple matrix multiplication with learned weights,

not an exhaustive comparison to every single training data

• Convolutional Neural Networks (coming weeks)
⇒ CNNs map image pixels to classes, but the mapping is more complex and will contain more parameters
⇒ advantages: very powerful
⇒ disadvantages: needs LOTS of data!

30 / 78

Recap Principal Component Analisis (PCA)
2. Sentinel-2 example

Classifying algorithms?

• k-Nearest Neighbor (kNN) (last week lecture)
⇒ label images by comparing them to (annotated) images from the training set
⇒ disadvantages:

• classifier needs to keep all training data for future comparisons with the test data
→ inefficient when datasets become very large (≥GB)

• classifying a test image is expensive since it requires a comparison to all training images

• Support Vector Machines (this week lecture)
⇒ parametric linear classification method
⇒ advantages:

• once the parameters are learnt, training data can be discarded
• classification (prediction) for a new test image is fast → simple matrix multiplication with learned weights,

not an exhaustive comparison to every single training data

• Convolutional Neural Networks (coming weeks)
⇒ CNNs map image pixels to classes, but the mapping is more complex and will contain more parameters
⇒ advantages: very powerful
⇒ disadvantages: needs LOTS of data!

31 / 78

Recap Principal Component Analisis (PCA)
2. Sentinel-2 example

Classifying algorithms?

• k-Nearest Neighbor (kNN) (last week lecture)
⇒ label images by comparing them to (annotated) images from the training set
⇒ disadvantages:

• classifier needs to keep all training data for future comparisons with the test data
→ inefficient when datasets become very large (≥GB)

• classifying a test image is expensive since it requires a comparison to all training images

• Support Vector Machines (this week lecture)
⇒ parametric linear classification method
⇒ advantages:

• once the parameters are learnt, training data can be discarded
• classification (prediction) for a new test image is fast → simple matrix multiplication with learned weights,

not an exhaustive comparison to every single training data

• Convolutional Neural Networks (coming weeks)
⇒ CNNs map image pixels to classes, but the mapping is more complex and will contain more parameters
⇒ advantages: very powerful
⇒ disadvantages: needs LOTS of data!

32 / 78

Recap Principal Component Analisis (PCA)
2. Sentinel-2 example

Classifying algorithms?

• k-Nearest Neighbor (kNN) (last week lecture)
⇒ label images by comparing them to (annotated) images from the training set
⇒ disadvantages:

• classifier needs to keep all training data for future comparisons with the test data
→ inefficient when datasets become very large (≥GB)

• classifying a test image is expensive since it requires a comparison to all training images

• Support Vector Machines (this week lecture)
⇒ parametric linear classification method
⇒ advantages:

• once the parameters are learnt, training data can be discarded
• classification (prediction) for a new test image is fast → simple matrix multiplication with learned weights,

not an exhaustive comparison to every single training data

• Convolutional Neural Networks (coming weeks)
⇒ CNNs map image pixels to classes, but the mapping is more complex and will contain more parameters
⇒ advantages: very powerful
⇒ disadvantages: needs LOTS of data!

33 / 78

Table of Contents

1. Recap Principal Component Analisis (PCA)
1. toy example
2. Sentinel-2 example

2. Support Vector Machine (SVM)
1. description
2. application examples

34 / 78

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• Task:
⇒ classify fruit images into either bananas or apples

• Features (hand-crafted):
⇒ Hue (yellow to red) & Elongation (max/min extent)
⇒ representation of input data in 2D feature space
⇒ can we “learn” which part of the feature space is
bananas/apples?

• Learning algorithm:
⇒ simple idea: split feature space into two half spaces
⇒ classify data based on linear decision boundary
⇒ perceptron: y = sign(wT x + b)

• y ∈ {−1, 1}: predicted class → banana or apple
• x ∈ R2: feature vector → [hue, elongation]
• w ∈ R2: “weight vector” → needs to be learned
• b ∈ R: “bias” → needs to be learned
• sign: sign function returning the sign of a real number

Hue

E
lo
n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples
?

-b/|w|

w

Recap from Lecture 08

35 / 78

https://en.wikipedia.org/wiki/Sign_function

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• Task:
⇒ classify fruit images into either bananas or apples

• Features (hand-crafted):
⇒ Hue (yellow to red) & Elongation (max/min extent)

⇒ representation of input data in 2D feature space
⇒ can we “learn” which part of the feature space is
bananas/apples?

• Learning algorithm:
⇒ simple idea: split feature space into two half spaces
⇒ classify data based on linear decision boundary
⇒ perceptron: y = sign(wT x + b)

• y ∈ {−1, 1}: predicted class → banana or apple
• x ∈ R2: feature vector → [hue, elongation]
• w ∈ R2: “weight vector” → needs to be learned
• b ∈ R: “bias” → needs to be learned
• sign: sign function returning the sign of a real number

Hue

E
lo
n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples
?

-b/|w|

w

Recap from Lecture 08

36 / 78

https://en.wikipedia.org/wiki/Sign_function

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• Task:
⇒ classify fruit images into either bananas or apples

• Features (hand-crafted):
⇒ Hue (yellow to red) & Elongation (max/min extent)
⇒ representation of input data in 2D feature space

⇒ can we “learn” which part of the feature space is
bananas/apples?

• Learning algorithm:
⇒ simple idea: split feature space into two half spaces
⇒ classify data based on linear decision boundary
⇒ perceptron: y = sign(wT x + b)

• y ∈ {−1, 1}: predicted class → banana or apple
• x ∈ R2: feature vector → [hue, elongation]
• w ∈ R2: “weight vector” → needs to be learned
• b ∈ R: “bias” → needs to be learned
• sign: sign function returning the sign of a real number

Hue

E
lo
n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples
?

-b/|w|

w

Recap from Lecture 08

37 / 78

https://en.wikipedia.org/wiki/Sign_function

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• Task:
⇒ classify fruit images into either bananas or apples

• Features (hand-crafted):
⇒ Hue (yellow to red) & Elongation (max/min extent)
⇒ representation of input data in 2D feature space
⇒ can we “learn” which part of the feature space is
bananas/apples?

• Learning algorithm:
⇒ simple idea: split feature space into two half spaces
⇒ classify data based on linear decision boundary
⇒ perceptron: y = sign(wT x + b)

• y ∈ {−1, 1}: predicted class → banana or apple
• x ∈ R2: feature vector → [hue, elongation]
• w ∈ R2: “weight vector” → needs to be learned
• b ∈ R: “bias” → needs to be learned
• sign: sign function returning the sign of a real number

Hue

E
lo
n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples
?

-b/|w|

w

Recap from Lecture 08

38 / 78

https://en.wikipedia.org/wiki/Sign_function

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• Task:
⇒ classify fruit images into either bananas or apples

• Features (hand-crafted):
⇒ Hue (yellow to red) & Elongation (max/min extent)
⇒ representation of input data in 2D feature space
⇒ can we “learn” which part of the feature space is
bananas/apples?

• Learning algorithm:
⇒ simple idea: split feature space into two half spaces

⇒ classify data based on linear decision boundary
⇒ perceptron: y = sign(wT x + b)

• y ∈ {−1, 1}: predicted class → banana or apple
• x ∈ R2: feature vector → [hue, elongation]
• w ∈ R2: “weight vector” → needs to be learned
• b ∈ R: “bias” → needs to be learned
• sign: sign function returning the sign of a real number

Hue

E
lo
n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples
?

-b/|w|

w

Recap from Lecture 08

39 / 78

https://en.wikipedia.org/wiki/Sign_function

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• Task:
⇒ classify fruit images into either bananas or apples

• Features (hand-crafted):
⇒ Hue (yellow to red) & Elongation (max/min extent)
⇒ representation of input data in 2D feature space
⇒ can we “learn” which part of the feature space is
bananas/apples?

• Learning algorithm:
⇒ simple idea: split feature space into two half spaces
⇒ classify data based on linear decision boundary

⇒ perceptron: y = sign(wT x + b)
• y ∈ {−1, 1}: predicted class → banana or apple
• x ∈ R2: feature vector → [hue, elongation]
• w ∈ R2: “weight vector” → needs to be learned
• b ∈ R: “bias” → needs to be learned
• sign: sign function returning the sign of a real number

Hue

E
lo
n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples
?

-b/|w|

w

Recap from Lecture 08

40 / 78

https://en.wikipedia.org/wiki/Sign_function

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• Task:
⇒ classify fruit images into either bananas or apples

• Features (hand-crafted):
⇒ Hue (yellow to red) & Elongation (max/min extent)
⇒ representation of input data in 2D feature space
⇒ can we “learn” which part of the feature space is
bananas/apples?

• Learning algorithm:
⇒ simple idea: split feature space into two half spaces
⇒ classify data based on linear decision boundary
⇒ perceptron: y = sign(wT x + b)

• y ∈ {−1, 1}: predicted class → banana or apple
• x ∈ R2: feature vector → [hue, elongation]
• w ∈ R2: “weight vector” → needs to be learned
• b ∈ R: “bias” → needs to be learned
• sign: sign function returning the sign of a real number

Hue

E
lo
n
g
a
tio

n

Spherical

Stick-like

RedYellowGreen

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples

Hue

E
lo

n
g

a
tio

n

Spherical

Stick-like

RedYellowGreen

Decision Boundary

Bananas

Apples
?

-b/|w|

w

Recap from Lecture 08

41 / 78

https://en.wikipedia.org/wiki/Sign_function

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

perceptron: y = sign(wT x + b)

• Best decision boundary (hyperplane)?
⇒ multiple ”good” boundaries

⇒ optimal hyperplane
= boundary with the maximal margin
= perceptron of maximal stability to new inputs

⇒ margin = 2
||w||

⇒ support vector points = points closest to the hyperplane
(only these points are contributing to the result, other points are not)

x
1

x
2

x
1

x
1

x
2

x
1H

1

x
1

x
2

x
1H

1

H
2

x
1

x
2

x
1H

1

H
2

H
3

x
1

x
2

x
1H

1

H
2

H
3

H
4

x
1

x
2

x
1H

1
H

4

☒ small margins

☑ large margins

op
tim

al
 h

yp
er

pl
an

e

x
1

x
2

x
1H

1
H

4

op
tim

al
 h

yp
er

pl
an

e

margin
2 / ||w||

w

x
1

x
2

x
1H

su
pp

or
t v

ec
to

rsu
pp

or
t v

ec
to

r

"s
up

po
rt

ve
cto

r p
oi

nt
s"

margin
2 / ||w||

w

42 / 78

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

perceptron: y = sign(wT x + b)

• Best decision boundary (hyperplane)?
⇒ multiple ”good” boundaries

⇒ optimal hyperplane
= boundary with the maximal margin
= perceptron of maximal stability to new inputs

⇒ margin = 2
||w||

⇒ support vector points = points closest to the hyperplane
(only these points are contributing to the result, other points are not)

x
1

x
2

x
1

x
1

x
2

x
1H

1

x
1

x
2

x
1H

1

H
2

x
1

x
2

x
1H

1

H
2

H
3

x
1

x
2

x
1H

1

H
2

H
3

H
4

x
1

x
2

x
1H

1
H

4

☒ small margins

☑ large margins

op
tim

al
 h

yp
er

pl
an

e

x
1

x
2

x
1H

1
H

4

op
tim

al
 h

yp
er

pl
an

e

margin
2 / ||w||

w

x
1

x
2

x
1H

su
pp

or
t v

ec
to

rsu
pp

or
t v

ec
to

r

"s
up

po
rt

ve
cto

r p
oi

nt
s"

margin
2 / ||w||

w

43 / 78

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

perceptron: y = sign(wT x + b)

• Best decision boundary (hyperplane)?
⇒ multiple ”good” boundaries

⇒ optimal hyperplane
= boundary with the maximal margin
= perceptron of maximal stability to new inputs

⇒ margin = 2
||w||

⇒ support vector points = points closest to the hyperplane
(only these points are contributing to the result, other points are not)

x
1

x
2

x
1

x
1

x
2

x
1H

1

x
1

x
2

x
1H

1

H
2

x
1

x
2

x
1H

1

H
2

H
3

x
1

x
2

x
1H

1

H
2

H
3

H
4

x
1

x
2

x
1H

1
H

4

☒ small margins

☑ large margins

op
tim

al
 h

yp
er

pl
an

e

x
1

x
2

x
1H

1
H

4

op
tim

al
 h

yp
er

pl
an

e

margin
2 / ||w||

w

x
1

x
2

x
1H

su
pp

or
t v

ec
to

rsu
pp

or
t v

ec
to

r

"s
up

po
rt

ve
cto

r p
oi

nt
s"

margin
2 / ||w||

w

44 / 78

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

perceptron: y = sign(wT x + b)

• Best decision boundary (hyperplane)?
⇒ multiple ”good” boundaries

⇒ optimal hyperplane
= boundary with the maximal margin
= perceptron of maximal stability to new inputs

⇒ margin = 2
||w||

⇒ support vector points = points closest to the hyperplane
(only these points are contributing to the result, other points are not)

x
1

x
2

x
1

x
1

x
2

x
1H

1

x
1

x
2

x
1H

1

H
2

x
1

x
2

x
1H

1

H
2

H
3

x
1

x
2

x
1H

1

H
2

H
3

H
4

x
1

x
2

x
1H

1
H

4

☒ small margins

☑ large margins

op
tim

al
 h

yp
er

pl
an

e

x
1

x
2

x
1H

1
H

4

op
tim

al
 h

yp
er

pl
an

e

margin
2 / ||w||

w

x
1

x
2

x
1H

su
pp

or
t v

ec
to

rsu
pp

or
t v

ec
to

r

"s
up

po
rt

ve
cto

r p
oi

nt
s"

margin
2 / ||w||

w

45 / 78

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

perceptron: y = sign(wT x + b)

• Best decision boundary (hyperplane)?
⇒ multiple ”good” boundaries

⇒ optimal hyperplane
= boundary with the maximal margin
= perceptron of maximal stability to new inputs

⇒ margin = 2
||w||

⇒ support vector points = points closest to the hyperplane
(only these points are contributing to the result, other points are not)

x
1

x
2

x
1

x
1

x
2

x
1H

1

x
1

x
2

x
1H

1

H
2

x
1

x
2

x
1H

1

H
2

H
3

x
1

x
2

x
1H

1

H
2

H
3

H
4

x
1

x
2

x
1H

1
H

4

☒ small margins

☑ large margins

op
tim

al
 h

yp
er

pl
an

e

x
1

x
2

x
1H

1
H

4

op
tim

al
 h

yp
er

pl
an

e

margin
2 / ||w||

w

x
1

x
2

x
1H

su
pp

or
t v

ec
to

rsu
pp

or
t v

ec
to

r

"s
up

po
rt

ve
cto

r p
oi

nt
s"

margin
2 / ||w||

w

46 / 78

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

perceptron: y = sign(wT x + b)

• Best decision boundary (hyperplane)?
⇒ multiple ”good” boundaries
⇒ optimal hyperplane

= boundary with the maximal margin
= perceptron of maximal stability to new inputs

⇒ margin = 2
||w||

⇒ support vector points = points closest to the hyperplane
(only these points are contributing to the result, other points are not)

x
1

x
2

x
1

x
1

x
2

x
1H

1

x
1

x
2

x
1H

1

H
2

x
1

x
2

x
1H

1

H
2

H
3

x
1

x
2

x
1H

1

H
2

H
3

H
4

x
1

x
2

x
1H

1
H

4

☒ small margins

☑ large margins

op
tim

al
 h

yp
er

pl
an

e

x
1

x
2

x
1H

1
H

4

op
tim

al
 h

yp
er

pl
an

e

margin
2 / ||w||

w

x
1

x
2

x
1H

su
pp

or
t v

ec
to

rsu
pp

or
t v

ec
to

r

"s
up

po
rt

ve
cto

r p
oi

nt
s"

margin
2 / ||w||

w

47 / 78

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

perceptron: y = sign(wT x + b)

• Best decision boundary (hyperplane)?
⇒ multiple ”good” boundaries
⇒ optimal hyperplane

= boundary with the maximal margin
= perceptron of maximal stability to new inputs

⇒ margin = 2
||w||

⇒ support vector points = points closest to the hyperplane
(only these points are contributing to the result, other points are not)

x
1

x
2

x
1

x
1

x
2

x
1H

1

x
1

x
2

x
1H

1

H
2

x
1

x
2

x
1H

1

H
2

H
3

x
1

x
2

x
1H

1

H
2

H
3

H
4

x
1

x
2

x
1H

1
H

4

☒ small margins

☑ large margins

op
tim

al
 h

yp
er

pl
an

e

x
1

x
2

x
1H

1
H

4

op
tim

al
 h

yp
er

pl
an

e

margin
2 / ||w||

w

x
1

x
2

x
1H

su
pp

or
t v

ec
to

rsu
pp

or
t v

ec
to

r

"s
up

po
rt

ve
cto

r p
oi

nt
s"

margin
2 / ||w||

w

48 / 78

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

perceptron: y = sign(wT x + b)

• Best decision boundary (hyperplane)?
⇒ multiple ”good” boundaries
⇒ optimal hyperplane

= boundary with the maximal margin
= perceptron of maximal stability to new inputs

⇒ margin = 2
||w||

⇒ support vector points = points closest to the hyperplane
(only these points are contributing to the result, other points are not)

x
1

x
2

x
1

x
1

x
2

x
1H

1

x
1

x
2

x
1H

1

H
2

x
1

x
2

x
1H

1

H
2

H
3

x
1

x
2

x
1H

1

H
2

H
3

H
4

x
1

x
2

x
1H

1
H

4

☒ small margins

☑ large margins

op
tim

al
 h

yp
er

pl
an

e

x
1

x
2

x
1H

1
H

4

op
tim

al
 h

yp
er

pl
an

e

margin
2 / ||w||

w

x
1

x
2

x
1H

su
pp

or
t v

ec
to

rsu
pp

or
t v

ec
to

r

"s
up

po
rt

ve
cto

r p
oi

nt
s"

margin
2 / ||w||

w

49 / 78

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• How can this best boundary be “learned”?
i.e. learn the linear classifier parameters (w, b)

⇒ maximize margin 2
||w||

⇔ max
w

2
||w ||

, subject to
{

wT xi + b ≥ 1 if yi = +1
wT xi + b ≤ 1 if yi = −1

which is equivalent to:
⇔ min

w
||w ||2, subject to yi (wT xi − b) ≥ 1

• How can outliers be handled?

⇒ is a hard-margin with 100% accuracy good?
⇒ no, allow small errors to favour overall better model
⇔ favour large margin boundaries
⇔ tolerate margin violation (soft-margin)

⇒ optimization becomes:

min
w,ξi
||w ||2 + C

N∑
i

ξi , subject to yi (wT xi − b) ≥ 1− ξi

where C is a regularization parameter:
small C ⇒ constraints easily ignored ⇒ large margin; large C ⇒ opposite

x
1

x
2

x
1H

su
pp

or
t v

ec
to

rsu
pp

or
t v

ec
to

r

"s
up

po
rt

ve
cto

r p
oi

nt
s"

margin
2 / ||w||

w

x
1

x
2

x
1H

w
T x

+
b

=
-1w

T x
+

b
=

0

w
T x

+
b

=
1

y
i
 = -1

y
i
 = 1

margin
2 / ||w||

w

x
1

x
2

x
1H

w
T x

+
b

=
-1w

T x
+

b
=

0

w
T x

+
b

=
1

y
i
 = -1

y
i
 = 1

margin
2 / ||w||

w

x
1

x
2

x
1

How to handle "outliers" ?

x
1

x
2

x
1

☒ points linearly separated, BUT very narrow margin

op
tim

al
 h

yp
er

pl
an

e ?
?

x
1

x
2

x
1H

ξ
i

soft margin

 ☑ allow small errors (soft-margin)

op
tim

al
 h

yp
er

pl
an

e

x
1

x
2

x
1H

ξ
i

soft margin

 ☑ allow small errors (soft-margin)

op
tim

al
 h

yp
er

pl
an

e

50 / 78

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• How can this best boundary be “learned”?
i.e. learn the linear classifier parameters (w, b)
⇒ maximize margin 2

||w||

⇔ max
w

2
||w ||

, subject to
{

wT xi + b ≥ 1 if yi = +1
wT xi + b ≤ 1 if yi = −1

which is equivalent to:
⇔ min

w
||w ||2, subject to yi (wT xi − b) ≥ 1

• How can outliers be handled?

⇒ is a hard-margin with 100% accuracy good?
⇒ no, allow small errors to favour overall better model
⇔ favour large margin boundaries
⇔ tolerate margin violation (soft-margin)

⇒ optimization becomes:

min
w,ξi
||w ||2 + C

N∑
i

ξi , subject to yi (wT xi − b) ≥ 1− ξi

where C is a regularization parameter:
small C ⇒ constraints easily ignored ⇒ large margin; large C ⇒ opposite

x
1

x
2

x
1H

su
pp

or
t v

ec
to

rsu
pp

or
t v

ec
to

r

"s
up

po
rt

ve
cto

r p
oi

nt
s"

margin
2 / ||w||

w

x
1

x
2

x
1H

w
T x

+
b

=
-1w

T x
+

b
=

0

w
T x

+
b

=
1

y
i
 = -1

y
i
 = 1

margin
2 / ||w||

w

x
1

x
2

x
1H

w
T x

+
b

=
-1w

T x
+

b
=

0

w
T x

+
b

=
1

y
i
 = -1

y
i
 = 1

margin
2 / ||w||

w

x
1

x
2

x
1

How to handle "outliers" ?

x
1

x
2

x
1

☒ points linearly separated, BUT very narrow margin

op
tim

al
 h

yp
er

pl
an

e ?
?

x
1

x
2

x
1H

ξ
i

soft margin

 ☑ allow small errors (soft-margin)

op
tim

al
 h

yp
er

pl
an

e

x
1

x
2

x
1H

ξ
i

soft margin

 ☑ allow small errors (soft-margin)

op
tim

al
 h

yp
er

pl
an

e

51 / 78

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• How can this best boundary be “learned”?
i.e. learn the linear classifier parameters (w, b)
⇒ maximize margin 2

||w||

⇔ max
w

2
||w ||

, subject to
{

wT xi + b ≥ 1 if yi = +1
wT xi + b ≤ 1 if yi = −1

which is equivalent to:
⇔ min

w
||w ||2, subject to yi (wT xi − b) ≥ 1

• How can outliers be handled?

⇒ is a hard-margin with 100% accuracy good?
⇒ no, allow small errors to favour overall better model
⇔ favour large margin boundaries
⇔ tolerate margin violation (soft-margin)

⇒ optimization becomes:

min
w,ξi
||w ||2 + C

N∑
i

ξi , subject to yi (wT xi − b) ≥ 1− ξi

where C is a regularization parameter:
small C ⇒ constraints easily ignored ⇒ large margin; large C ⇒ opposite

x
1

x
2

x
1H

su
pp

or
t v

ec
to

rsu
pp

or
t v

ec
to

r

"s
up

po
rt

ve
cto

r p
oi

nt
s"

margin
2 / ||w||

w

x
1

x
2

x
1H

w
T x

+
b

=
-1w

T x
+

b
=

0

w
T x

+
b

=
1

y
i
 = -1

y
i
 = 1

margin
2 / ||w||

w

x
1

x
2

x
1H

w
T x

+
b

=
-1w

T x
+

b
=

0

w
T x

+
b

=
1

y
i
 = -1

y
i
 = 1

margin
2 / ||w||

w

x
1

x
2

x
1

How to handle "outliers" ?

x
1

x
2

x
1

☒ points linearly separated, BUT very narrow margin

op
tim

al
 h

yp
er

pl
an

e ?
?

x
1

x
2

x
1H

ξ
i

soft margin

 ☑ allow small errors (soft-margin)

op
tim

al
 h

yp
er

pl
an

e

x
1

x
2

x
1H

ξ
i

soft margin

 ☑ allow small errors (soft-margin)

op
tim

al
 h

yp
er

pl
an

e

52 / 78

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• How can this best boundary be “learned”?
i.e. learn the linear classifier parameters (w, b)
⇒ maximize margin 2

||w||

⇔ max
w

2
||w ||

, subject to
{

wT xi + b ≥ 1 if yi = +1
wT xi + b ≤ 1 if yi = −1

which is equivalent to:
⇔ min

w
||w ||2, subject to yi (wT xi − b) ≥ 1

• How can outliers be handled?

⇒ is a hard-margin with 100% accuracy good?
⇒ no, allow small errors to favour overall better model
⇔ favour large margin boundaries
⇔ tolerate margin violation (soft-margin)

⇒ optimization becomes:

min
w,ξi
||w ||2 + C

N∑
i

ξi , subject to yi (wT xi − b) ≥ 1− ξi

where C is a regularization parameter:
small C ⇒ constraints easily ignored ⇒ large margin; large C ⇒ opposite

x
1

x
2

x
1H

su
pp

or
t v

ec
to

rsu
pp

or
t v

ec
to

r

"s
up

po
rt

ve
cto

r p
oi

nt
s"

margin
2 / ||w||

w

x
1

x
2

x
1H

w
T x

+
b

=
-1w

T x
+

b
=

0

w
T x

+
b

=
1

y
i
 = -1

y
i
 = 1

margin
2 / ||w||

w

x
1

x
2

x
1H

w
T x

+
b

=
-1w

T x
+

b
=

0

w
T x

+
b

=
1

y
i
 = -1

y
i
 = 1

margin
2 / ||w||

w

x
1

x
2

x
1

How to handle "outliers" ?

x
1

x
2

x
1

☒ points linearly separated, BUT very narrow margin

op
tim

al
 h

yp
er

pl
an

e ?
?

x
1

x
2

x
1H

ξ
i

soft margin

 ☑ allow small errors (soft-margin)

op
tim

al
 h

yp
er

pl
an

e

x
1

x
2

x
1H

ξ
i

soft margin

 ☑ allow small errors (soft-margin)

op
tim

al
 h

yp
er

pl
an

e

53 / 78

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• How can this best boundary be “learned”?
i.e. learn the linear classifier parameters (w, b)
⇒ maximize margin 2

||w||

⇔ max
w

2
||w ||

, subject to
{

wT xi + b ≥ 1 if yi = +1
wT xi + b ≤ 1 if yi = −1

which is equivalent to:
⇔ min

w
||w ||2, subject to yi (wT xi − b) ≥ 1

• How can outliers be handled?
⇒ is a hard-margin with 100% accuracy good?

⇒ no, allow small errors to favour overall better model
⇔ favour large margin boundaries
⇔ tolerate margin violation (soft-margin)

⇒ optimization becomes:

min
w,ξi
||w ||2 + C

N∑
i

ξi , subject to yi (wT xi − b) ≥ 1− ξi

where C is a regularization parameter:
small C ⇒ constraints easily ignored ⇒ large margin; large C ⇒ opposite

x
1

x
2

x
1H

su
pp

or
t v

ec
to

rsu
pp

or
t v

ec
to

r

"s
up

po
rt

ve
cto

r p
oi

nt
s"

margin
2 / ||w||

w

x
1

x
2

x
1H

w
T x

+
b

=
-1w

T x
+

b
=

0

w
T x

+
b

=
1

y
i
 = -1

y
i
 = 1

margin
2 / ||w||

w

x
1

x
2

x
1H

w
T x

+
b

=
-1w

T x
+

b
=

0

w
T x

+
b

=
1

y
i
 = -1

y
i
 = 1

margin
2 / ||w||

w

x
1

x
2

x
1

How to handle "outliers" ?

x
1

x
2

x
1

☒ points linearly separated, BUT very narrow margin

op
tim

al
 h

yp
er

pl
an

e ?
?

x
1

x
2

x
1H

ξ
i

soft margin

 ☑ allow small errors (soft-margin)

op
tim

al
 h

yp
er

pl
an

e

x
1

x
2

x
1H

ξ
i

soft margin

 ☑ allow small errors (soft-margin)

op
tim

al
 h

yp
er

pl
an

e

54 / 78

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• How can this best boundary be “learned”?
i.e. learn the linear classifier parameters (w, b)
⇒ maximize margin 2

||w||

⇔ max
w

2
||w ||

, subject to
{

wT xi + b ≥ 1 if yi = +1
wT xi + b ≤ 1 if yi = −1

which is equivalent to:
⇔ min

w
||w ||2, subject to yi (wT xi − b) ≥ 1

• How can outliers be handled?
⇒ is a hard-margin with 100% accuracy good?
⇒ no, allow small errors to favour overall better model
⇔ favour large margin boundaries
⇔ tolerate margin violation (soft-margin)

⇒ optimization becomes:

min
w,ξi
||w ||2 + C

N∑
i

ξi , subject to yi (wT xi − b) ≥ 1− ξi

where C is a regularization parameter:
small C ⇒ constraints easily ignored ⇒ large margin; large C ⇒ opposite

x
1

x
2

x
1H

su
pp

or
t v

ec
to

rsu
pp

or
t v

ec
to

r

"s
up

po
rt

ve
cto

r p
oi

nt
s"

margin
2 / ||w||

w

x
1

x
2

x
1H

w
T x

+
b

=
-1w

T x
+

b
=

0

w
T x

+
b

=
1

y
i
 = -1

y
i
 = 1

margin
2 / ||w||

w

x
1

x
2

x
1H

w
T x

+
b

=
-1w

T x
+

b
=

0

w
T x

+
b

=
1

y
i
 = -1

y
i
 = 1

margin
2 / ||w||

w

x
1

x
2

x
1

How to handle "outliers" ?

x
1

x
2

x
1

☒ points linearly separated, BUT very narrow margin

op
tim

al
 h

yp
er

pl
an

e ?
?

x
1

x
2

x
1H

ξ
i

soft margin

 ☑ allow small errors (soft-margin)

op
tim

al
 h

yp
er

pl
an

e

x
1

x
2

x
1H

ξ
i

soft margin

 ☑ allow small errors (soft-margin)

op
tim

al
 h

yp
er

pl
an

e

55 / 78

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• How can this best boundary be “learned”?
i.e. learn the linear classifier parameters (w, b)
⇒ maximize margin 2

||w||

⇔ max
w

2
||w ||

, subject to
{

wT xi + b ≥ 1 if yi = +1
wT xi + b ≤ 1 if yi = −1

which is equivalent to:
⇔ min

w
||w ||2, subject to yi (wT xi − b) ≥ 1

• How can outliers be handled?
⇒ is a hard-margin with 100% accuracy good?
⇒ no, allow small errors to favour overall better model
⇔ favour large margin boundaries
⇔ tolerate margin violation (soft-margin)

⇒ optimization becomes:

min
w,ξi
||w ||2 + C

N∑
i

ξi , subject to yi (wT xi − b) ≥ 1− ξi

where C is a regularization parameter:
small C ⇒ constraints easily ignored ⇒ large margin; large C ⇒ opposite

x
1

x
2

x
1H

su
pp

or
t v

ec
to

rsu
pp

or
t v

ec
to

r

"s
up

po
rt

ve
cto

r p
oi

nt
s"

margin
2 / ||w||

w

x
1

x
2

x
1H

w
T x

+
b

=
-1w

T x
+

b
=

0

w
T x

+
b

=
1

y
i
 = -1

y
i
 = 1

margin
2 / ||w||

w

x
1

x
2

x
1H

w
T x

+
b

=
-1w

T x
+

b
=

0

w
T x

+
b

=
1

y
i
 = -1

y
i
 = 1

margin
2 / ||w||

w

x
1

x
2

x
1

How to handle "outliers" ?

x
1

x
2

x
1

☒ points linearly separated, BUT very narrow margin

op
tim

al
 h

yp
er

pl
an

e ?
?

x
1

x
2

x
1H

ξ
i

soft margin

 ☑ allow small errors (soft-margin)

op
tim

al
 h

yp
er

pl
an

e

x
1

x
2

x
1H

ξ
i

soft margin

 ☑ allow small errors (soft-margin)

op
tim

al
 h

yp
er

pl
an

e

56 / 78

Support Vector Machine (SVM)
1. description

Side note: reformulating optimization in terms of regularization and loss function (anticipating DL lectures)

Learning an SVM has been formulated as a constrained optimization problem over w and ξ:

min
w,ξi
||w ||2 + C

N∑
i

ξi subject to: yi (wT xi − b) ≥ 1− ξi

The constraint yi (wT xi − b) ≥ 1− ξi can be written more concisely as: yi f (xi) ≥ 1− ξi

Together with ξi > 0, it is equivalent to: ξi = max(0, 1− yi f (xi))

Hence the learning problem is equivalent to the unconstrained optimization problem over w :

min
w
||w ||2︸ ︷︷ ︸

regularization

+ C
N∑
i

max(0, 1− yi f (xi))︸ ︷︷ ︸
loss function (Hinge loss)

57 / 78

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• What if the features xi are not linearly separable?

⇒ compute new features xi 7→ φ(x)
φ(x) is a feature map, mapping x to φ(x) where data is separable

⇒ solve for w in high dimensional feature space
⇒ data not lineary-seperable in original feature space become separable

58 / 78

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• What if the features xi are not linearly separable?
⇒ compute new features xi 7→ φ(x)
φ(x) is a feature map, mapping x to φ(x) where data is separable

⇒ solve for w in high dimensional feature space
⇒ data not lineary-seperable in original feature space become separable

59 / 78

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• What if the features xi are not linearly separable?
⇒ compute new features xi 7→ φ(x)
φ(x) is a feature map, mapping x to φ(x) where data is separable

⇒ solve for w in high dimensional feature space

⇒ data not lineary-seperable in original feature space become separable

60 / 78

Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hänsch)

• What if the features xi are not linearly separable?
⇒ compute new features xi 7→ φ(x)
φ(x) is a feature map, mapping x to φ(x) where data is separable

⇒ solve for w in high dimensional feature space
⇒ data not lineary-seperable in original feature space become separable

61 / 78

Support Vector Machine (SVM)
1. description

Kernel trick
The Representer Theorem states that the solution w can be written as a linear combination of the training data:

w =
∑N

j=1 αjyjx

The linear classifier can therefore be reformulated as:
f (x) = wT x + b

=
N∑
i

αi yi (xT
i x) + b

NB: this reformulation seems to have the disadvantage of a K-NN classifier, i.e. requires the training data points xi .
However, many of the αi = 0: the ones that are non-zero define the support vector points xi

Using the feature map φ(x), it can be reformulated as:

f (x) =
N∑
i

αi yi (φ(xi)Tφ(x)) + b

=
N∑
i

αi yi k(xi , x) + b

where k(xi , x) is known as a Kernel

62 / 78

Support Vector Machine (SVM)
1. description

Kernel trick
The Representer Theorem states that the solution w can be written as a linear combination of the training data:

w =
∑N

j=1 αjyjx
The linear classifier can therefore be reformulated as:

f (x) = wT x + b

=
N∑
i

αi yi (xT
i x) + b

NB: this reformulation seems to have the disadvantage of a K-NN classifier, i.e. requires the training data points xi .
However, many of the αi = 0: the ones that are non-zero define the support vector points xi

Using the feature map φ(x), it can be reformulated as:

f (x) =
N∑
i

αi yi (φ(xi)Tφ(x)) + b

=
N∑
i

αi yi k(xi , x) + b

where k(xi , x) is known as a Kernel

63 / 78

Support Vector Machine (SVM)
1. description

Kernel trick
The Representer Theorem states that the solution w can be written as a linear combination of the training data:

w =
∑N

j=1 αjyjx
The linear classifier can therefore be reformulated as:

f (x) = wT x + b

=
N∑
i

αi yi (xT
i x) + b

NB: this reformulation seems to have the disadvantage of a K-NN classifier, i.e. requires the training data points xi .
However, many of the αi = 0: the ones that are non-zero define the support vector points xi

Using the feature map φ(x), it can be reformulated as:

f (x) =
N∑
i

αi yi (φ(xi)Tφ(x)) + b

=
N∑
i

αi yi k(xi , x) + b

where k(xi , x) is known as a Kernel

64 / 78

Support Vector Machine (SVM)
1. description

Kernel trick
The Representer Theorem states that the solution w can be written as a linear combination of the training data:

w =
∑N

j=1 αjyjx
The linear classifier can therefore be reformulated as:

f (x) = wT x + b

=
N∑
i

αi yi (xT
i x) + b

NB: this reformulation seems to have the disadvantage of a K-NN classifier, i.e. requires the training data points xi .
However, many of the αi = 0: the ones that are non-zero define the support vector points xi

Using the feature map φ(x), it can be reformulated as:

f (x) =
N∑
i

αi yi (φ(xi)Tφ(x)) + b

=
N∑
i

αi yi k(xi , x) + b

where k(xi , x) is known as a Kernel
65 / 78

Support Vector Machine (SVM)
1. description

Kernel trick

• Classifier can be learnt and applied without explicitly computing φ(x)
• All that is required is the kernel k(x , x ′)
• Multiple kernels exist:

• linear kernels: k(x , x ′) = xT x ′

→ very fast and easy to train, but very simple
• polynomial kernels: k(x , x ′) = (1 + xT x ′)d

→ contains all polynomial terms up to degree d
• gaussian kernels: k(x , x ′) = exp(−||x − x ′||2/2σ2) (RBF kernel)

→ kernel very powerful and most often used

66 / 78

Support Vector Machine (SVM)
1. description

Kernel trick

• Classifier can be learnt and applied without explicitly computing φ(x)
• All that is required is the kernel k(x , x ′)
• Multiple kernels exist:

• linear kernels: k(x , x ′) = xT x ′

→ very fast and easy to train, but very simple
• polynomial kernels: k(x , x ′) = (1 + xT x ′)d

→ contains all polynomial terms up to degree d
• gaussian kernels: k(x , x ′) = exp(−||x − x ′||2/2σ2) (RBF kernel)

→ kernel very powerful and most often used

67 / 78

Support Vector Machine (SVM)
1. description

Kernel trick

• Classifier can be learnt and applied without explicitly computing φ(x)
• All that is required is the kernel k(x , x ′)
• Multiple kernels exist:

• linear kernels: k(x , x ′) = xT x ′

→ very fast and easy to train, but very simple
• polynomial kernels: k(x , x ′) = (1 + xT x ′)d

→ contains all polynomial terms up to degree d
• gaussian kernels: k(x , x ′) = exp(−||x − x ′||2/2σ2) (RBF kernel)

→ kernel very powerful and most often used

68 / 78

Support Vector Machine (SVM)
2. application examples

1. HOG features + SVM for object detection

• Original idea: Dalal and Triggs (2005) - ”Histograms of Oriented Gradients for Human Detection”
• Adaptation: detect ships in satellite imagery (notebook using skimage/sklearn)

raw ship image HOG feature computation train SVM for classification

69 / 78

https://www.kaggle.com/manikg/training-svm-classifier-with-hog-features/data

Support Vector Machine (SVM)
2. application examples

1. HOG features + SVM for object detection

• Original idea: Dalal and Triggs (2005) - ”Histograms of Oriented Gradients for Human Detection”
• Adaptation: detect ships in satellite imagery (notebook using skimage/sklearn)

raw ship image HOG feature computation train SVM for classification

70 / 78

https://www.kaggle.com/manikg/training-svm-classifier-with-hog-features/data

Support Vector Machine (SVM)
2. application examples

1. HOG features + SVM for object detection

• Original idea: Dalal and Triggs (2005) - ”Histograms of Oriented Gradients for Human Detection”
• Adaptation: detect ships in satellite imagery (notebook using skimage/sklearn)

raw ship image

HOG feature computation train SVM for classification

71 / 78

https://www.kaggle.com/manikg/training-svm-classifier-with-hog-features/data

Support Vector Machine (SVM)
2. application examples

1. HOG features + SVM for object detection

• Original idea: Dalal and Triggs (2005) - ”Histograms of Oriented Gradients for Human Detection”
• Adaptation: detect ships in satellite imagery (notebook using skimage/sklearn)

raw ship image HOG feature computation

train SVM for classification

72 / 78

https://www.kaggle.com/manikg/training-svm-classifier-with-hog-features/data

Support Vector Machine (SVM)
2. application examples

1. HOG features + SVM for object detection

• Original idea: Dalal and Triggs (2005) - ”Histograms of Oriented Gradients for Human Detection”
• Adaptation: detect ships in satellite imagery (notebook using skimage/sklearn)

raw ship image HOG feature computation train SVM for classification

73 / 78

https://www.kaggle.com/manikg/training-svm-classifier-with-hog-features/data

Support Vector Machine (SVM)
2. application examples

2. Classify land use in satellite images (Sentinel-2)

PCA dimensionality reduction train SVM & apply land-use classification

EXERCISE !

74 / 78

Support Vector Machine (SVM)
2. application examples

2. Classify land use in satellite images (Sentinel-2)

PCA dimensionality reduction

train SVM & apply land-use classification

EXERCISE !

75 / 78

Support Vector Machine (SVM)
2. application examples

2. Classify land use in satellite images (Sentinel-2)

PCA dimensionality reduction train SVM & apply

land-use classification

EXERCISE !

76 / 78

Support Vector Machine (SVM)
2. application examples

2. Classify land use in satellite images (Sentinel-2)

PCA dimensionality reduction train SVM & apply land-use classification

EXERCISE !

77 / 78

Support Vector Machine (SVM)
2. application examples

2. Classify land use in satellite images (Sentinel-2)

PCA dimensionality reduction train SVM & apply land-use classification

EXERCISE !

78 / 78

	Recap Principal Component Analisis (PCA)
	toy example
	Sentinel-2 example

	Support Vector Machine (SVM)
	description
	application examples

