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Recap Principal Component Analisis (PCA)

1. toy example

PCA toy example

We have several wine bottles in our cellar, 11 features (alcohol, acidity, etc.) describe its quality.
Which features best define it, are there related features (i.e. covariant) which are redundent?

fixed acldity volatile acldity citric acld residual sugar chiorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality
0 74 0.70 0.00 19 007 11.0 340 09978 351 055 94 5
U\ ’R ]D! v' v 1 78 088 0.00 26 0038 250 670 09368 320 068 98 5
2 7.8 076 0.04 23 0082 15.0 540 09970 326 065 98 5
| I 3 12 028 056 19 0075 17.0 600 09880 3.16 058 98 6
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Recap Principal Component Analisis (PCA)

1. toy example

PCA toy example

We have several wine bottles in our cellar, 11 features (alcohol, acidity, etc.) describe its quality.
Which features best define it, are there related features (i.e. covariant) which are redundent?

fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality

[ _ 0 74 0.70 0.00 19 0.076 1.0 340 09978 351 0.56 94 5
UU\ }R ]D!"v 1 78 0.88 0.00 26 0.0s8 250 670 0998 320 0.68 98 5
Y T 7 1
| T’ 2 78 0.76 0.04 23 0.082 15.0 540 09970 3.26 0.65 98 5
)i I 3 1.2 0.28 0.56 19 0.075 17.0 600 09980 3.16 0.58 98 6
| A i 1 4 1 |l
TR B N A B B T .
4 74 0.70 0.00 1.9 0.076 1.0 340 09978 3.51 0.56 94 5

= PCA allows to summarize each wine with fewer characteristics
= reduce data dimensions




Recap Principal Component Analisis (PCA)

1. toy example

PCA toy example

We have several wine bottles in our cellar, 11 features (alcohol, acidity, etc.) describe its quality.
Which features best define it, are there related features (i.e. covariant) which are redundent?

fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality

[ = i ] 74 0.70 0.00 19 0076 1.0 340 09978 351 056 94 5
uu\ }K ]U-"' 1 78 0.88 0.00 26 0.098 250 670 0998 3.20 068 98 5
‘ | T 2 78 076 0.04 23 o082 15.0 540 09870 3.26 065 98 5
I '} I 3 1m2 028 056 19 0.075 17.0 60.0 09980 3.16 058 98 6

L. G - - - S A
4 74 0.70 0.00 19 0076 11.0 340 09378 351 056 94 5

= PCA allows to summarize each wine with fewer characteristics
= reduce data dimensions

= PCA does not select some features and discards others,
instead it defines new features (using linear combinations of available features)
which will best represent wine variability




Recap Principal Component Analisis (PCA)

1. toy example

= Example with 2 variables: compute covariance matrix — find largest eigenvalues & eigenvectors — project

(eigenvectors represent the directions of the largest variance of the data, eigenvalues represent the magnitude of this variance in those directions)

ginal data

vary
=
=




Recap Principal Component Analisis (PCA)

1. toy example

= Example with 2 variables: compute covariance matrix — find largest eigenvalues & eigenvectors — project

(eigenvectors represent the directions of the largest variance of the data, eigenvalues represent the magnitude of this variance in those directions)

original data + eigenvectors

20 20
15 15
10 + + ~ 10
+ 2
05 + £ os
s 0.0 " E 0.0
g —
+ o+ =
-05 2 -05
-10 + a-10
+
=15 =15
— 1st elgenuector [lampest sigenvalus]
— 2 clgenwector [2nd lorgest slgenualue)
=20 =20
-2 -1 0 1 2 -2 -1 0 1 2
var x principal component 1



Recap Principal Component Analisis (PCA)

1. toy example

= Example with 2 variables: compute covariance matrix — find largest eigenvalues & eigenvectors — project

(eigenvectors represent the directions of the largest variance of the data, eigenvalues represent the magnitude of this variance in those directions)

20 20 original data + eigenvectors 20 projected data on eigenvectors
15 15 15
+
10 + 10
N ; 10
05 + g os
o + 2 05 +
ja E + +
g 00 _> g 00 —> 00 + ‘
+ |+ 5 + + +
-0.5 S -05 +
4 E -05
-10 + 5 -10
" -10
15 -15
— 1ot eigervector {lsrg=st eigernaluc] s
— 2ref igenwvectar (2nd largest elgenvalue) F prajectn an 1 senvectar
-2.0 -2.0 + arajection an 2 elgenvertors
-2 -1 0 1 2 -2 -1 0 1 2 20
varx principal component 1 -2 -1 0 1 2



Recap Principal Component Analisis (PCA)

1. toy example

= Example with 2 variables: compute covariance matrix — find largest eigenvalues & eigenvectors — project

(eigenvectors represent the directions of the largest variance of the data, eigenvalues represent the magnitude of this variance in those directions)

20 20 20
15 15 15
10 + 10
" 3 10
05 + g os
. + 2 os +
£ +
5 00 5 00 + +
] _> 8 00 ‘
= + o+ = + + +
-0.5 S -05 +
+ E -05
-10 + 5 -10
-1.0
-15 -15
— 12 clpenvector flamgest eigermaluz) 15
—— 20 eigenwectar (2n4 lrgest elgenwalue) J prajectian an 1 sienvestar
-2.0 -2.0 + arajection an 2 elgenvertors
-2 -1 0 -2 -1 0 1 2 20
wvarx principal component 1 -2 -1 0 1

= the 2 original features (var x, var y) could be reduced to 1 feature, i.e. the projection on the 1st eigenvector

ginal data

original data + eigenvectors

projected data on eigenvectors

— low variance (dispersion) of the data along the 2nd eigenvector
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Recap Principal Component Analisis (PCA)

1. toy example

= Do the same with the 11 features

— search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

11/78



Recap Principal Component Analisis (PCA)

1. toy example

= Do the same with the 11 features

— search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?

251

20 1

15 A

10 A

Data variance explained [%]

0 2 4 6 8 10
Principal Components
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Recap Principal Component Analisis (PCA)

1. toy example

= Do the same with the 11 features

— search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?

6 first principal components
25 4 explain 95% of data variation

20 1

15 A

10 A

Data variance explained [%]

0 2 4 6 8 10
Principal Components
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Recap Principal Component Analisis (PCA)

1. toy example

= Do the same with the 11 features

— search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?

[} 1 2 3 4 5 6 7 8 9 10

0 0489314 -0.238584 0.463632 0.146107 0212247 -0036158 0.023575 0.395353 0438520 0.242821 -0.113232

0110503 0274930 -0.151791 0272080 0.148052 0513567 0569487 0233575 0.006711 -0.037554 -0.386181

~

0123302 -0.443963 0.238247 0101283 -0.092614 0426793 0322415 -0.338671 0.057697 0.279786 0.471673

@

0229617 0.078960 -0.079418 -0.372793 0.666195 -0.043538 -0.034577 -0.174500 -0.003788 0.550872 -0.122181

a

-0.082614 0218735 -0.058573 0732144 0246501 -0.159152 -0.222465 0157077 0.267530 0.225962 0.350681

@

0101479 0.411443 0.069593 0.049156 0304333 -0.014000 0.136308 -0.391152 -0.522116 -0.351263 0.361645

0350227 0533735 0.105497 (0290663 0.370413 -0.116596 -0.093662 -0.170481 -0.025135 -0.447469 -0.327651

~

0177595 -0.078775 -0.377516 0299645 -0.357009 -0.204781 0019036 -0.239223 -0.561391 0.374604 -0.217626

-0.184021  0.129110 0.381450 -0.007523 -0.111339 -0.635405 0592116 -0.020713 0.167746 0.058367 -0.037603

©

-0.249523 0.365925 0.621677 0.092672 -0.217671 0248483 -0.370750 -0.239990 -0.010970 0.112320 -0.303015

10 0639691 0002389 -0.070910 0.184030 0.053065 -0.051421 0.068702 -0.567332 0.340711 0.069555 -0.314526
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Recap Principal Component Analisis (PCA)

1. toy example

= Do the same with the 11 features

— search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?

[}

1

2

3

a

5

7

8

9

10

0 0489314

-0.110503

~

-0.123302

@

0229617

a

-0.082614

@

0101479

-0.350227

~

0177595

-0.134021

©

-0.249523

10 0.639691

-0.238564

0274930

-0.443963

0.078960

0218735

0411443

0533735

-0.078775

0.129110

0.365925

0.002389

0.463632

-0.151791

0.238247

-0.078418

-0.058573

0.069593

0.105497

-0.377516

0.381450

0.621677

-0.070910

0.146107

0.272080

0.101283

-0.372793

0.732144

0.049156

0.290663

0299845

-0.007523

0.092672

0.184030

0212247

0.148052

-0.092614

0666195

0.246501

0.304339

0.370413

-0.357009

-0.111333

0217671

0.053065

-0.036158

0513567

0.428793

-0.043538

-0.159152

-0.014000

-0.116596

-0.204781

-0.635405

0.248483

-0.051421

0.023575

0569487

0.322415

-0.034577

-0.222465

0.136308

-0.093662

0.019036

0592116

-0.370750

0.068702

0.395353

0233575

-0.338671

-0.174500

0.157077

0391152

0170481

-0.239223

-0.020719

-0.239990

0567332

-0.438520

0.006711

0.057657

-0.003788

0.267530

0522116

0.025138

-0.561391

0.167746

-0.010970

0.340711

0.242921

-0.037554

0.279786

0550872

0.225962

-0.361263

-0.447469

0.374604

0.058367

0.112320

0.069555

-0.113232

-0.386181

0.471673

0122181

0.350681

0361645

-0.327651

0217626

-0.037603

-0.303015

-0.314526

Principal Component 1

PC 1 = 0.49*feature0 + -0.24*featurel + 0.46*feature2 + 0.15*feature3 + 0.21*feature4 + -0.04*feature5 + 0.02*feature6 + 0.40*feature7 + -0.44*feature8 + 0.24*feature9 + -0.11*feature10
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Recap Principal Component Analisis (PCA)

1. toy example

= Do the same with the 11 features

— search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?

Q3: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?

16/78



Recap Principal Component Analisis (PCA)

1. toy example

= Do the same with the 11 features

— search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?

Q3: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?

Prediction accuracy of wine quality (classification task using KNN):
® using 11 original features = accuracy = 0.79

= using 6 first principal components = accuracy = 0.78

17 /78



Recap Principal Component Analisis (PCA)

1. toy example

= Do the same with the 11 features

— search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?

Q3: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?

Prediction accuracy of wine quality (classification task using KNN):
® using 11 original features = accuracy = 0.79

= using 6 first principal components = accuracy = 0.78

= PCA can successfully reduce data dimensionality,
and achieve (almost) the same prediction accuracy with fewer features

18/78



Recap Principal Component Analisis (PCA)

1. toy example

= Do the same with the 11 features

— search for the principal components in a 11-dimensional space (the max. number of components is restricted by the number of features)

Q1: How much data variance is explained by each principal component (eigenvector)?
Q2: How do the 11 eigenvectors (PCs) relate to the original feature space?

Q3: How accurate is the prediction using all original 11 features, versus using only the e.g. 6 first principal components?

Prediction accuracy of wine quality (classification task using KNN):

using 11 original features = accuracy = 0.79

= using 6 first principal components = accuracy = 0.78

= PCA can successfully reduce data dimensionality,
and achieve (almost) the same prediction accuracy with fewer features

= how about using PCA on images?
— Sentinel-2 example: reduce a space with 20,000x4x15x15 pixels (900 dimensions)

19/78



Recap Principal Component Analisis (PCA)

2. Sentinel-2 example

Sentinel-2 example = apply PCA on satellite image crops

Original dataset

1 crop = (4,15,15)

20,000 x ||| "
RGB

(20000, 4, 15, 15)

20/78



Recap Principal Component Analisis (PCA)

2. Sentinel-2 example

Sentinel-2 example = apply PCA on satellite image crops

Original dataset Vectorize dataset

1 crop = (1,900)
i ]

1 crop = (4,15,15)

20,000 x Bm :(>

(20000, 4, 15, 15)

21/78



Recap Principal Component Analisis (PCA)

2. Sentinel-2 example

Sentinel-2 example = apply PCA on satellite image crops

Original dataset Vectorize dataset Create covariance matrix
(mean covmat of all crops)

1 crop = (1,900)
G 3

1 crop = (1,900)

1 crop = (4,15,15)

20,000 x Bm :(> ::>

G

np.outer (crop, crop)

(20000, 4, 15, 15) (20000, 900) (900, 900)

22/78



Recap Principal Component Analisis (PCA)

2. Sentinel-2 example

Sentinel-2 example = apply PCA on satellite image crops

Original dataset Vectorize dataset Create covariance matrix Get eigenvectors
(mean covmat of all crops) & eigenvalues

1 crop = (1,900)
i ]

1 crop = (1,900)

> 2> >

np.outer (crop, crop) np.linalg.eig(covmat)

1 crop = (4,15,15)

20,000 x

(900, 900) (900, 900)

23 /78



Recap Principal Component Analisis (PCA)

2. Sentinel-2 example

Sentinel-2 example = apply PCA on satellite image crops

Original dataset Vectorize dataset Create covariance matrix Get eigenvectors Reshape eigenvectors
(mean covmat of all crops) & eigenvalues = principal components as images
1 crop = (1,900) eigen values = (1,900
1 crop = (1,900) gen yaes = 1990
1 crop = (4,15,15) k ] — =
20,000 x :: l,: C l,:
np.outer (crop, crop) np.linalg.eig(covmat) np.reshape (eig_vec, (900,4,15,15))
(20000, 4, 15, 15) (20000, 900) (900, 900) (900, 900) (900, 4, 15, 15)

24 /78



Recap Principal Component Analisis (PCA)
2. Sentinel-2 example

Sentinel-2 example = apply PCA on satellite image crops

Original dataset Vectorize dataset Create covariance matrix Get eigenvectors
(mean covmat of all crops)

& eigenvalues
1 crop = (1,900)
G ]

1 crop = (4,15,15)

1 crop = (1,900)

Reshape eigenvectors
= principal components as images

20,000 x

=N

>

np.outer (crop, crop)

np.linalg.eig(covmat)
(900, 900)

>

np.reshape (eig_vec, (300,4

(900, 900)
Compute features
= project each crop on first 32 pc

crops
(20000,900)

="

1 crop projected on 32 pc
(1,32)

for i in range(20000):  #loo
for j in range(32):
[i,3) = np.dot(cropli . sii:])
= (900,1) @ (1

(scalar)

(900, 4, 15, 15)

25 /78



Recap Principal Component Analisis (PCA)

2. Sentinel-2 example

Sentinel-2 example = apply PCA on satellite image crops

Create covariance matrix
(mean covmat of all crops)

Original dataset Vectorize dataset Get eigenvectors

& eigenvalues

Reshape eigenvectors
= principal components as images

1 crop = (1,900)

1 crop = (1,900)

1 crop = (4,15,15)

2> N

20,000 x

np.outer (crop, crop) np.linalg.eig(covmat)

>

np. reshape (eig_vec, (900,4,15,15))

(900, 900)

(20000, 4, 15, 15 (20000, 900) (900, 900)

Compute features
= project each crop on first 32 pc

Reconstruct crops
= reconstruct crop from its 32 features & 32 first pcs

features of crop #1 = (1,32)
crops
(20000,900) 1 crop projected on 32 pc
/ =(1,32)
¢ r 1 reconstructed crop
‘ 8 C y = (4,15,15)
for i in range(20000) : Reconstruction crop #1
for j in range(32):
[i,3) = np.dot(cropli,:::], peli,:::]) reconstruction = mean_crops #(4, 15, 15)
(900,1) @ (1,900) for i in range(32) /

(scalar) reconstruction +=

(scalar) * (4,15,15)
= (4,5,15)

(900, 4, 15, 15)

26 /78



Recap Principal Component Analisis (PCA)
2. Sentinel-2 example

Sentinel-2 example = apply PCA on satellite image crops

Original dataset Vectorize dataset Create covariance matrix Get eigenvectors
(mean covmat of all crops)

& eigenvalues
1 crop = (1,900)

1 crop = (4,15,15)

1 crop = (1,900)

Reshape eigenvectors

eigen val

20,000 x

=

>

(20000, 4

15, 15)

np.outer (crop, crop)

np.linalg.eig(covmat)
(20000, 900)

(900, 900)

= principal components as images

=

>

np.reshape (eig_vec, (300,

4,15,15))

(900, 900)
Compute features

Reconstruct crops
= project each crop on first 32 pc

= reconstruct crop from its 32 features & 32 first pcs

features of crop #1 = (1,32)
crops
(20000,900)

1 crop projected on 32 pc
=(132)

feat %&conslructed crop
Hures (—

=(4,15,15)
for i in range(20000):  #loop Reconstruction crop #1
for j in range(32
[i,3) = np.dot(cropli,:::], pcli, :::]) reconstruction = mean_crops  #(4, 15, 15)
= (900,1) @ (1,900) for i in range(32):
= (scalar)

#loop

reconstruction += features[0,i] * pcli,
= (scalar) * (4,15,15)
= (4,5,15)

(900, 4, 15, 15)

original crop  reconstructed crop

27 /78



Recap Principal Component Analisis (PCA)

2. Sentinel-2 example

Sentinel-2 example = apply PCA on satellite image crops

A crop of 900 pixels (4x15x15) can be reduced fairly accurately to 32 points,
i.e., a projection in a 32-dimensional space (first 32 pcs)

28 /78



Recap Principal Component Analisis (PCA)

2. Sentinel-2 example

Sentinel-2 example = apply PCA on satellite image crops

A crop of 900 pixels (4x15x15) can be reduced fairly accurately to 32 points,
i.e., a projection in a 32-dimensional space (first 32 pcs)

This dimensionality-reduction of the dataset allows us to feed it to a classifying algorithm

29 /78



Recap Principal Component Analisis (PCA)

2. Sentinel-2 example

Classifying algorithms?

= k-Nearest Neighbor (kNN) (/ast week lecture)
= label images by comparing them to (annotated) images from the training set

= disadvantages:
= classifier needs to keep all training data for future comparisons with the test data
— inefficient when datasets become very large (>GB)
= classifying a test image is expensive since it requires a comparison to all training images

30/78



Recap Principal Component Analisis (PCA)

2. Sentinel-2 example

Classifying algorithms?

= k-Nearest Neighbor (kNN) (/ast week lecture)
= label images by comparing them to (annotated) images from the training set

= disadvantages:
= classifier needs to keep all training data for future comparisons with the test data
— inefficient when datasets become very large (>GB)
= classifying a test image is expensive since it requires a comparison to all training images

= Support Vector Machines (this week lecture)
= parametric linear classification method

= advantages:
= once the parameters are learnt, training data can be discarded
= classification (prediction) for a new test image is fast — simple matrix multiplication with learned weights,
not an exhaustive comparison to every single training data

31/78



Recap Principal Component Analisis (PCA)

2. Sentinel-2 example

Classifying algorithms?

= k-Nearest Neighbor (kNN) (/ast week lecture)
= label images by comparing them to (annotated) images from the training set

= disadvantages:
= classifier needs to keep all training data for future comparisons with the test data
— inefficient when datasets become very large (>GB)
= classifying a test image is expensive since it requires a comparison to all training images

= Support Vector Machines (this week lecture)
= parametric linear classification method

= advantages:
= once the parameters are learnt, training data can be discarded
= classification (prediction) for a new test image is fast — simple matrix multiplication with learned weights,
not an exhaustive comparison to every single training data

= Convolutional Neural Networks (coming weeks)
= CNNs map image pixels to classes, but the mapping is more complex and will contain more parameters
= advantages: very powerful
= disadvantages: needs LOTS of data!

32/78



Recap Principal Component Analisis (PCA)

2. Sentinel-2 example

Classifying algorithms?

= k-Nearest Neighbor (kNN) (/ast week lecture)
= label images by comparing them to (annotated) images from the training set

= disadvantages:
= classifier needs to keep all training data for future comparisons with the test data
— inefficient when datasets become very large (>GB)
= classifying a test image is expensive since it requires a comparison to all training images

= Support Vector Machines (this week lecture)
=> parametric linear classification method

= advantages:
= once the parameters are learnt, training data can be discarded
= classification (prediction) for a new test image is fast — simple matrix multiplication with learned weights,
not an exhaustive comparison to every single training data

= Convolutional Neural Networks (coming weeks)
= CNNs map image pixels to classes, but the mapping is more complex and will contain more parameters
= advantages: very powerful
= disadvantages: needs LOTS of data!

33/78



Table of Contents

2. Support Vector Machine (SVM)

1. description
2. application examples
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Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch) Recap from Lecture 08

= Task:

= classify fruit images into either bananas or apples

35/78


https://en.wikipedia.org/wiki/Sign_function

Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch) Recap from Lecture 08

= Task:

= classify fruit images into either bananas or apples

= Features (hand-crafted):
= Hue (yellow to red) & Elongation (max/min extent)
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Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch) Recap from Lecture 08

= Task:
= classify fruit images into either bananas or apples

= Features (hand-crafted):

= Hue (yellow to red) & Elongation (max/min extent) A
= representation of input data in 2D feature space Stick-like— ° °
[ ]
[ ]
m ®eo o 0.0
o [ ) Y Y
=)
2 ® %%
g' ) e o o °
°® ]
o
e © °e o
ical-| @
Spherical P ° (] ® o -
T T >
Green Yellow Red
Hue
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Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch) Recap from Lecture 08

= Task:
= classify fruit images into either bananas or apples

= Features (hand-crafted):

= Hue (yellow to red) & Elongation (max/min extent) A
= representation of input data in 2D feature space Stick-like— ° °
= can we “learn” which part of the feature space is o
bananas/apples? ®
/app m ®e o ...
S o _eo_o
=)
8 ® e
g' ) e o o °
P ]
o
e © °e o
ical- @
Spherical P ° (] ® o -
T T >
Green Yellow Red
Hue
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Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch) Recap from Lecture 08

= Task:
= classify fruit images into either bananas or apples

= Features (hand-crafted):

= Hue (yellow to red) & Elongation (max/min extent) A
= representation of input data in 2D feature space Stick-like— ° °
= can we “learn” which part of the feature space is o
bananas/apples? ®
/app m ®e o ...
S ®_o_o Bananas
= Learning algorithm: § ® "o
= simple idea: split feature space into two half spaces s
=)
® o
Spherical] e e © 0%
p ) ® [} o
T T >
Green Yellow Red
Hue
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Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch) Recap from Lecture 08

= Task:
= classify fruit images into either bananas or apples

= Features (hand-crafted):
= Hue (yellow to red) & Elongation (max/min extent) A
= representation of input data in 2D feature space Stick-like—
= can we “learn” which part of the feature space is
bananas/apples?

m
<)

R R Bananas
= Learning algorithm: §
= simple idea: split feature space into two half spaces s
= classify data based on linear decision boundary >

Spherical |
T T >
Green Yellow Red
Hue
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Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch) Recap from Lecture 08

= Task:
= classify fruit images into either bananas or apples

= Features (hand-crafted):
= Hue (yellow to red) & Elongation (max/min extent) A
= representation of input data in 2D feature space
= can we “learn” which part of the feature space is
bananas/apples?

= Learning algorithm:
= simple idea: split feature space into two half spaces
= classify data based on linear decision boundary

= perceptron: | y = sign(w’x + b)

y € {—1,1}: predicted class — banana or apple
x € R2: feature vector — [hue, elongation]

w € R?: “weight vector” — needs to be learned -b/lwl| @ [ i
b € R: “bias" — needs to be learned

sign: sign function returning the sign of a real number
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Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch)

perceptron: | y = sign(w’ x + b) ‘Xf
() L
o
= Best decision boundary (hyperplane)? Y
= multiple "good” boundaries ®
o ©
[
L
[
o
e®®o
X,
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Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch)

perceptron: | y = sign(w’ x + b) ‘Xf
() L
o
= Best decision boundary (hyperplane)? Y
= multiple "good” boundaries ®
o ©
[
L
[
o
e®®o
H X,
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Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch)

perceptron: | y = sign(w’ x + b) ‘Xf
() L
o
= Best decision boundary (hyperplane)? Y
= multiple "good” boundaries ®
H . .
’ [
L
[
o
e®®o
H X,
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Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch)

perceptron: | y = sign(w’ x + b) A
o
= Best decision boundary (hyperplane)?
= multiple "good” boundaries ®
H,| .
HE
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Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch)

perceptron: | y = sign(w’ x + b) A
o
= Best decision boundary (hyperplane)?
= multiple "good” boundaries ®
H, ®
HE
H
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Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch)

perceptron: | y = sign(w’ x + b) A
) [ )
o
= Best decision boundary (hyperplane)? ®
= multiple "good” boundaries ®
= optimal hyperplane ® large margins

= boundary with the maximal margin
= perceptron of maximal stability to new inputs
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Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch)

perceptron: | y = sign(w’ x + b) A

= Best decision boundary (hyperplane)?
= multiple "good” boundaries
= optimal hyperplane
= boundary with the maximal margin
= perceptron of maximal stability to new inputs

. 2
= margin = +—
margin =
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Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch)

perceptron: | y = sign(w’ x + b)

= Best decision boundary (hyperplane)?
= multiple "good” boundaries
= optimal hyperplane
= boundary with the maximal margin
= perceptron of maximal stability to new inputs
= margin = ﬁ
= support vector points = points closest to the hyperplane

(only these points are contributing to the result, other points are not)
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Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch)

= How can this best boundary be “learned”?

i.e. learn the linear classifier parameters (w, b)
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Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch)

= How can this best boundary be “learned”?

i.e. learn the linear classifier parameters (w, b)
=> maximize margin

[wl]

2 Txi+b>1 ify;=+1
< max ——, subject to WTX'+ - I yi=+
w o ||wl| wixi+b<1 ifyy=-1
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Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch)

How can this best boundary be “learned”?

i.e. learn the linear classifier parameters (w, b)
=> maximize margin

[wl]

2 Txi+b>1 ify;=+1
< max ——, subject to woxi+b2 Ty =+
wo |lwl|

wixi+b<1 ify=-1
which is equivalent to:

< min||wl||?, subject to y;(w'x; — b) > 1
w

52/78



Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch)

= How can this best boundary be “learned”?

i.e. learn the linear classifier parameters (w, b)
=> maximize margin

[wl]

2 Txi+b>1 ify
< max ——, subject to woxi+b2 i
wo |lwl|

+1
wixi+b<1 ify =

-1

which is equivalent to:
< min||wl||?, subject to y;(w'x; — b) > 1
w

How can outliers be handled?

How to handle "outliers" ?
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Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch)

= How can this best boundary be “learned”?

i.e. learn the linear classifier parameters (w, b)
=> maximize margin

[wil
2 T,. b>1 if v 1 )(2 points linearly separated, BUT very narrow margin
< max ——, subject to WTX' thz I yi=+ A
w HWH w x,-+b§1 Ify[:—]. . Q!
which is equivalent to: Y ® ﬂ&\v‘&
< min||wl||?, subject to y;(w'x; — b) > 1 %
w . Q,\\@“
= How can outliers be handled? @ ® Y,
= is a hard-margin with 100% accuracy good? ® o
@
® L
[
00%e
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Support Vector Machine (SVM)
1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch)

= How can this best boundary be “learned”?

i.e. learn the linear classifier parameters (w, b)
=> maximize margin

[wl]

2 Txi+b>1 ify;
< max ——, subject to WTX'+ - I Yi
w o ||wl| wixi+b<1 ify=

X
+1 s
-1

/] allow small errors (soft-margin)

which is equivalent to:
< min||wl||?, subject to y;(w'x; — b) > 1
w

How can outliers be handled?
= is a hard-margin with 100% accuracy good?

= no, allow small errors to favour overall better model
& favour large margin boundaries

& tolerate margin violation (soft-margin)
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Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch)

= How can this best boundary be “learned”?
i.e. learn the linear classifier parameters (w, b)

=> maximize margin ﬁ

X 7 allow small errors (soft-margin)

2 Txi+b>1 ify;=+1 2
< max ——, subject to WTX’ +b= ' Yi=+ A
w o ||wl| wixi+b<1 ifyy=-1 ®
which is equivalent to: e d
< min||wl||?, subject to y;(w'x; — b) > 1
w

= How can outliers be handled?
= is a hard-margin with 100% accuracy good?
= no, allow small errors to favour overall better model
& favour large margin boundaries
& tolerate margin violation (soft-margin)

= optimization becomes:
N
: 2 : T o ® ®e
min ||w]| +CZ§,-, subject to y;j(w'x; — b) > 1—¢; S
w,&j X
. H 1

i
where C is a regularization parameter:

small C = constraints easily ignored = large margin; large C = opposite
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Support Vector Machine (SVM)

1. description

Side note: reformulating optimization in terms of regularization and loss function (anticipating DL lectures)

Learning an SVM has been formulated as a constrained optimization problem over w and &:
N
. 2 . T
min ||w|| + C i subject to: i(w'x;—b)>1—¢&
min [[wlf* + C D ¢ j i )2 1-¢
The constraint y;(w”x; — b) > 1 — & can be written more concisely as: yif(x;) > 1 — &

Together with & > 0, it is equivalent to: & = max(0,1 — yif(x;))

Hence the learning problem is equivalent to the unconstrained optimization problem over w:

N
min ||w|]> + CZ max(0, 1 — y;f(x;))
w N~

regularization

i loss function (Hinge loss)
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Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch)

® o o
= What if the features x; are not linearly separable? o P °
)

[ ] (] o

©q © [

[ ]
e © Py
>
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Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch)

= What if the features x; are not linearly separable?
= compute new features x; — @(x)
¢(x) is a feature map, mapping x to ¢(x) where data is separable
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Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch)

= What if the features x; are not linearly separable?
= compute new features x; — @(x)
¢(x) is a feature map, mapping x to ¢(x) where data is separable
= solve for w in high dimensional feature space
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Support Vector Machine (SVM)

1. description

Toy example (courtesy of Andreas Ley & Ronny Hinsch)

= What if the features x; are not linearly separable?
= compute new features x; — @(x)
¢(x) is a feature map, mapping x to ¢(x) where data is separable
= solve for w in high dimensional feature space
= data not lineary-seperable in original feature space become separable
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Support Vector Machine (SVM)

1. description

Kernel trick
The Representer Theorem states that the solution w can be written as a linear combination of the training data:

N
W=D X
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Support Vector Machine (SVM)

1. description

Kernel trick

The Representer Theorem states that the solution
w

The linear classifier can therefore be reformulated

f(x) =

w can be written as a linear combination of the training data:

— ZLuj=1 Qjyjx

as:

WTx+b

N
Z oe,-y,-(x,-Tx) +b
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Support Vector Machine (SVM)

1. description

Kernel trick

The Representer Theorem states that the solution w can be written as a linear combination of the training data:
w= ZJN:I oYX

The linear classifier can therefore be reformulated as:

f(x) = wix4 b
N
- Z Oé,'y/'(X,‘TX) + b

NB: this reformulation seems to have the disadvantage of a K-NN classifier, i.e. requires the training data points x;.

However, many of the a; = Q: the ones that are non-zero define the support vector points x;
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Support Vector Machine (SVM)

1. description

Kernel trick

The Representer Theorem states that the solution w can be written as a linear combination of the training data:
w= ZJN:I oYX

The linear classifier can therefore be reformulated as:

f(x) = wix4 b
N
- Z Oé,'y/'(X,‘TX) + b

NB: this reformulation seems to have the disadvantage of a K-NN classifier, i.e. requires the training data points x;.

However, many of the a; = Q: the ones that are non-zero define the support vector points x;

Using the feature map ¢(x), it can be reformulated as:

Fx) =Y aiyi(é(x)T ¢(x)) + b

N
= Zozfy;k(Xu x)+ b
where k(x;, x) is known as a Kernel
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Support Vector Machine (SVM)

1. description

Kernel trick

= (Classifier can be learnt and applied without explicitly computing ¢(x)
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Support Vector Machine (SVM)

1. description

Kernel trick

= (Classifier can be learnt and applied without explicitly computing ¢(x)

= All that is required is the kernel k(x, x")
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Support Vector Machine (SVM)

1. description

Kernel trick

= (Classifier can be learnt and applied without explicitly computing ¢(x)
= All that is required is the kernel k(x, x")

= Multiple kernels exist:
= linear kernels: k(x,x’) = xTx’
— very fast and easy to train, but very simple
= polynomial kernels: k(x,x’) = (1 + x7x’)¢
— contains all polynomial terms up to degree d
= gaussian kernels: k(x,x’) = exp(—||x — x||?/202) (RBF kernel)
— kernel very powerful and most often used
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Support Vector Machine (SVM)

2. application examples

1. HOG features + SVM for object detection

. Original idea: Dalal and Triggs (2005) - "Histograms of Oriented Gradients for Human Detection”
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Support Vector Machine (SVM)

2. application examples

1. HOG features + SVM for object detection

. Original idea: Dalal and Triggs (2005) - "Histograms of Oriented Gradients for Human Detection”
= Adaptation: detect ships in satellite imagery (notebook using skimage/sklearn)
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Support Vector Machine (SVM)

2. application examples

1. HOG features + SVM for object detection

= Original idea: Dalal and Triggs (2005) - "Histograms of Oriented Gradients for Human Detection”
= Adaptation: detect ships in satellite imagery (notebook using skimage/sklearn)

raw ship image
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Support Vector Machine (SVM)

2. application examples

1. HOG features + SVM for object detection

. Original idea: Dalal and Triggs (2005) - "Histograms of Oriented Gradients for Human Detection”
= Adaptation: detect ships in satellite imagery (notebook using skimage/sklearn)

raw ship image HOG feature computation
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Support Vector Machine (SVM)

2. application examples

1. HOG features + SVM for object detection

. Original idea: Dalal and Triggs (2005) - "Histograms of Oriented Gradients for Human Detection”
= Adaptation: detect ships in satellite imagery (notebook using skimage/sklearn)

raw ship image HOG feature computation train SVM for classification

Accuracy: 0.99625

precision  recall fl-score support

0.0 1.00 1.00 1.00 589

1.0 1.00 0.99 0.99 211
accuracy 1.00 800
cro avg 1.00 0.99 1.00 800
weighted avg 1.00 1.00 1.00 800
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Support Vector Machine (SVM)

2. application examples

2. Classify land use in satellite images (Sentinel-2)
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Support Vector Machine (SVM)

2. application examples

2. Classify land use in satellite images (Sentinel-2)

PCA dimensionality reduction
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Support Vector Machine (SVM)

2. application examples

2. Classify land use in satellite images (Sentinel-2)

PCA dimensionality reduction train SVM & apply
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Support Vector Machine (SVM)

2. application examples

2. Classify land use in satellite images (Sentinel-2)

PCA dimensionality reduction train SVM & apply land-use classification
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Support Vector Machine (SVM)

2. application examples

2. Classify land use in satellite images (Sentinel-2)

PCA dimensionality reduction train SVM & apply land-use classification

EXERCISE !
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