Motion Estimation:

Digital Image Correlation & Optical Flow

Lecture 06

Computer Vision for Geosciences

2021-04-09

Table of Contents

- 1. Motion estimation
 - 1. introduction
 - 2. cross-correlation methods
 - 3. optical flow methods

2. Install OpenCV

Table of Contents

- 1. Motion estimation
 - 1. introduction
 - 2. cross-correlation methods
 - 3. optical flow methods

2. Install OpenCV

GOAL:

 \Rightarrow estimate the 2D motion projected on the image plane by the objects moving in the 3D scene

APPLICATIONS in geoscience

- ⇒ capture motion, with imagery from ground based cameras, UAV, satellites, etc
- \Rightarrow few examples:
 - lava flows
 - ash plumes
 - dome growth
 - glacier motion
 - landslides
 - analogue modeling
 - etc

GOAL:

 \Rightarrow estimate the 2D motion projected on the image plane by the objects moving in the 3D scene

APPLICATIONS in geoscience:

- ⇒ capture motion, with imagery from ground based cameras, UAV, satellites, etc.
- \Rightarrow few examples:
 - lava flows
 - ash plumes
 - dome growth
 - glacier motion
 - landslides
 - analogue modeling
 - etc.

1. cross-correlation methods

- ⇒ determine a displacement vector by maximizing the correlation peak from two successive images
 - Digital Image Correlation (DIC) 12
 - → commonly used for measuring surface deformation
 - Particle Image Velocimetry (PIV) ³
 - → commonly used for flow visualization, typically fluid seeded with tracer particles (experimental fluid mechanics NB: PIV is very similar to DIC in principle and implementation algorithm

2. optical flow methods (OF)

- \Rightarrow originally developed by comp. vision scientists to track objects motion (e.g., people and cars) in videos
 - Sparse Optical Flow, e.g. Lucas-Kanade algorithm
 - Dense Optical Flow, e.g. Farnebäck algorithm ⁶

¹Peters et al. (1983) Application of digital correlation methods to rigid body mechanics Opt. Eng. 22 738–42

²Pan et al. (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review

³ Adrian (1991) Particle-imaging techniques for experimental fluid mechanics. Ann Rev Fluid Mech 23:261–304

⁴Horn and Schunck (1981) Determining optical flow. Artif Intell 17:185–204

⁵Lucas and Kanade (1981) An iterative image registration technique with an application to stereo vision. Proc. of Imaging Understandin

⁶ Farnebäck (2003) Two-frame motion estimation based on polynomial expansion, Proc. Scandinavian Conf. on Image Analysis

1. cross-correlation methods

- ⇒ determine a displacement vector by maximizing the correlation peak from two successive images
 - Digital Image Correlation (DIC) ¹²
 - → commonly used for measuring surface deformation
 - Particle Image Velocimetry (PIV) ³
 - → commonly used for flow visualization, typically fluid seeded with tracer particles (experimental fluid mechanics)

 NB: PIV is very similar to DIC in principle and implementation algorithm

2. optical flow methods (OF)

- \Rightarrow originally developed by comp. vision scientists to track objects motion (e.g., people and cars) in videos
 - Sparse Optical Flow, e.g. Lucas-Kanade algorithm
 - Dense Optical Flow, e.g. Farnebäck algorithm ⁶

¹Peters et al. (1983) Application of digital correlation methods to rigid body mechanics Opt. Eng. 22 738–42

²Pan et al. (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review

³ Adrian (1991) Particle-imaging techniques for experimental fluid mechanics. Ann Rev Fluid Mech 23:261-304

⁴Horn and Schunck (1981) Determining optical flow. Artif Intell 17:185-204

⁵Lucas and Kanade (1981) An iterative image registration technique with an application to stereo vision. Proc. of Imaging Understandin

⁶ Farnebäck (2003) Two-frame motion estimation based on polynomial expansion, Proc. Scandinavian Conf. on Image Analysis

1. cross-correlation methods

⇒ determine a displacement vector by maximizing the correlation peak from two successive images

- Digital Image Correlation (DIC) ¹²
 - → commonly used for measuring surface deformation
- Particle Image Velocimetry (PIV) ³
 - commonly used for flow visualization, typically fluid seeded with tracer particles (experimental fluid mechanics)

 NB: PIV is very similar to DIC in principle and implementation algorithm.

2. optical flow methods (OF)

⇒ originally developed by comp. vision scientists to track objects motion (e.g., people and cars) in videos ⁴

- Sparse Optical Flow, e.g. Lucas-Kanade algorithm ⁵
- Dense Optical Flow, e.g. Farnebäck algorithm ⁶

¹Peters et al. (1983) Application of digital correlation methods to rigid body mechanics Opt. Eng. 22 738–42

²Pan et al. (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review

³ Adrian (1991) Particle-imaging techniques for experimental fluid mechanics. Ann Rev Fluid Mech 23:261-304

⁴Horn and Schunck (1981) Determining optical flow. Artif Intell 17:185–204

⁵Lucas and Kanade (1981) An iterative image registration technique with an application to stereo vision. Proc. of Imaging Understanding

⁶ Farnebäck (2003) Two-frame motion estimation based on polynomial expansion, Proc. Scandinavian Conf. on Image Analysis

1. cross-correlation methods

- ⇒ determine a displacement vector by maximizing the correlation peak from two successive images
 - Digital Image Correlation (DIC) ¹²
 - → commonly used for measuring surface deformation
 - Particle Image Velocimetry (PIV) ³
 - → commonly used for flow visualization, typically fluid seeded with tracer particles (experimental fluid mechanics)

 NB: PIV is very similar to DIC in principle and implementation algorithm

2. optical flow methods (OF)

- ⇒ originally developed by comp. vision scientists to track objects motion (e.g., people and cars) in videos ⁴
 - Sparse Optical Flow, e.g. Lucas-Kanade algorithm ⁵
 - Dense Optical Flow, e.g. Farnebäck algorithm ⁶

¹Peters et al. (1983) Application of digital correlation methods to rigid body mechanics Opt. Eng. 22 738–42

²Pan et al. (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review

³Adrian (1991) Particle-imaging techniques for experimental fluid mechanics. Ann Rev Fluid Mech 23:261-304

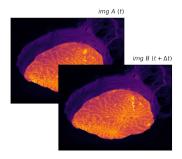
⁴Horn and Schunck (1981) Determining optical flow. Artif Intell 17:185-204

⁵Lucas and Kanade (1981) An iterative image registration technique with an application to stereo vision. Proc. of Imaging Understanding

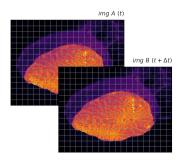
⁶ Farnebäck (2003) Two-frame motion estimation based on polynomial expansion, Proc. Scandinavian Conf. on Image Analysis

- \Rightarrow analyze the displacement within 2 images acquired at different time
- \Rightarrow analyze within discretized subsets (windows) of both images
- \Rightarrow evaluate similarity degree between both subsets using a cross-correlation (CC) criterior
- ⇒ the maximum correlation in each window corresponds to the displacement
- NB: the correlation-map is twice as big as the window sizes because windows can shift by their maximum size both horizontally and vertically

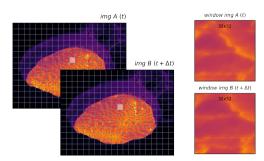
- ⇒ analyze the displacement within 2 images acquired at different time
- ⇒ analyze within discretized subsets (windows) of both images
- \Rightarrow evaluate similarity degree between both subsets using a cross-correlation (CC) criterion
- ⇒ the maximum correlation in each window corresponds to the displacement



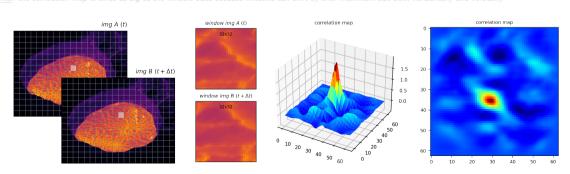
- \Rightarrow analyze the displacement within 2 images acquired at different time
- \Rightarrow analyze within discretized subsets (windows) of both images
- \Rightarrow evaluate similarity degree between both subsets using a cross-correlation (CC) criterion
- ⇒ the maximum correlation in each window corresponds to the displacement



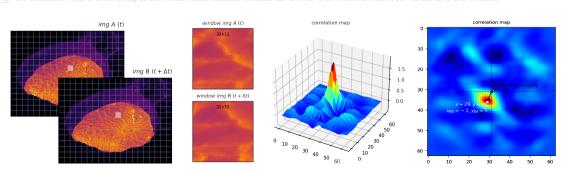
- ⇒ analyze the displacement within 2 images acquired at different time
- \Rightarrow analyze within discretized subsets (windows) of both images
- ⇒ evaluate similarity degree between both subsets using a cross-correlation (CC) criterion
- ⇒ the maximum correlation in each window corresponds to the displacement



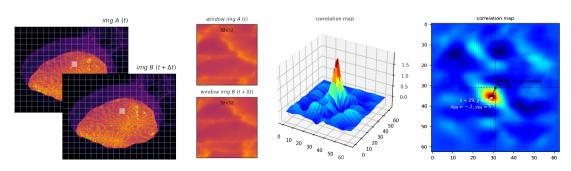
- ⇒ analyze the displacement within 2 images acquired at different time
- ⇒ analyze within discretized subsets (windows) of both images
- ⇒ evaluate similarity degree between both subsets using a cross-correlation (CC) criterion
- ⇒ the maximum correlation in each window corresponds to the displacement



- ⇒ analyze the displacement within 2 images acquired at different time
- ⇒ analyze within discretized subsets (windows) of both images
- ⇒ evaluate similarity degree between both subsets using a cross-correlation (CC) criterion
- ⇒ the maximum correlation in each window corresponds to the displacement



- ⇒ analyze the displacement within 2 images acquired at different time
- ⇒ analyze within discretized subsets (windows) of both images
- ⇒ evaluate similarity degree between both subsets using a cross-correlation (CC) criterion
- ⇒ the maximum correlation in each window corresponds to the displacement



Motion estimation 2. cross-correlation methods

Cross-correlation method to estimate motion:

⇒ loop over the entire image to recover the displacements

$\underline{\mathsf{NB}}\ 1$: several correlation criterion can be used to evaluate the similarity degree

 $\overline{ ext{NB 2}}$: post-processing of displacement vectors allow to recover e.g. strain maps (local derivative calculation)

Table 1. Co	mmonly used	l cross-correlat	ion criterion.
-------------	-------------	------------------	----------------

CC correlation criterion	Definition
Cross-correlation (CC)	$C_{CC} = \sum_{i=-M}^{M} \sum_{j=-M}^{M} [f(x_i, y_j)g(x_i', y_j')]$
Normalized cross-correlation (NCC)	$C_{NCC} = \sum_{i=-M}^{M} \sum_{j=-M}^{M} \left[f(x_i, y_j)g(x_i', y_j') \right]$ $C_{NCC} = \sum_{i=-M}^{M} \sum_{j=-M}^{M} \left[f(x_i, y_j)g(x_i', y_j') \right]$ $\frac{M}{M} \left\{ [f(x_i, y_i) - f_{e_i}] \times [g(x_i', y_i') - g_{e_i}] \right\}$
Zero-normalized cross-correlation (ZNCC)	$C_{\text{ZNCC}} = \sum_{i=-M}^{M} \sum_{j=-M}^{M} \left\{ \frac{[f(x_i, y_j) - f_m] \times [g(x_i', y_j') - g_m]}{\Delta f \Delta g} \right\}$

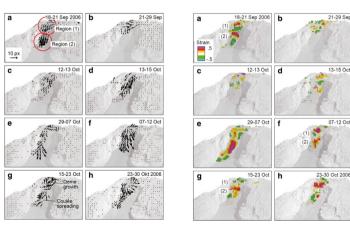
Table 2. Commonly used SSD correlation criterion.

SSD correlation criterion	Definition
Sum of squared differences (SSD)	$C_{\text{SSD}} = \sum_{i=-M}^{M} \sum_{j=-M}^{M} [f(x_i, y_j) - g(x'_i, y'_j)]^2$
Normalized sum of squared differences (NSSD)	$C_{\text{NSSD}} = \sum_{i=-M}^{M} \sum_{j=-M}^{M} \left[\frac{f(x_i, y_j)}{\tilde{f}} - \frac{g(x_i', y_j')}{\tilde{g}} \right]^2$
Zero-normalized sum of squared differences (ZNSSD)	$C_{\text{ZNSSD}} = \sum_{i = -M}^{M} \sum_{j = -M}^{M} \left[\frac{f(x_i, y_j) - f_m}{\Delta f} - \frac{g(x_i', y_j') - g_m}{\Delta g} \right]^2$

from Pan et al. 2009

NB 1: several correlation criterion can be used to evaluate the similarity degree

NB 2: post-processing of displacement vectors allow to recover e.g. strain maps (local derivative calculation)



Colima volcano dome growth and coulée spreading (Walter et al. 2013)

- \Rightarrow the most general version of motion estimation is to compute an independent estimate of motion at each pixel \rightarrow generally known as **optical flow** (Szeliski 2010)¹
- \Rightarrow in contrast to the <u>correlation method</u> that is essentially an integral approach, the <u>optical flow method</u> is a differential approach (hence better suited for to images with continuous patterns) (Liu et al. 2015)²
- \Rightarrow Horn and Schunck (1981) gave the first optical flow equation (a.k.a. the brightness constraint equation)
- ⇒ the most famous algorithms developped to solve the optical flow equation are
 - Lucas and Kanade (1981): sparse optical flow (Lucas-Kanade, 1981)
 ⇒ displacement vectors computed for "best-suited" image regions: corners & edges (good features!
 - Farneback, 2003: dense optical flow
 - \Rightarrow displacement vectors computed for every pixel in the image

¹Szeliski (2010) Computer Vision: Algorithms and Applications, Springer editions

²Liu et al. (2015) Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images, Exp. Fluids

- \Rightarrow the most general version of motion estimation is to compute an independent estimate of motion at each pixel \rightarrow generally known as **optical flow** (Szeliski 2010)¹
- \Rightarrow in contrast to the <u>correlation method</u> that is essentially an integral approach, the <u>optical flow method</u> is a differential approach (hence better suited for to images with continuous patterns) (Liu et al. 2015)²
- \Rightarrow Horn and Schunck (1981) gave the first optical flow equation (a.k.a. the brightness constraint equation)
- \Rightarrow the most famous algorithms developped to solve the optical flow equation are:
 - Lucas and Kanade (1981): sparse optical flow (Lucas-Kanade, 1981)
 ⇒ displacement vectors computed for "best-suited" image regions: corners & edges (good features!)
 - Farneback, 2003: dense optical flow ⇒ displacement vectors computed for every pixel in the image

¹Szeliski (2010) Computer Vision: Algorithms and Applications, Springer editions

²Liu et al. (2015) Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images, Exp. Fluids

- \Rightarrow the most general version of motion estimation is to compute an independent estimate of motion at each pixel \rightarrow generally known as **optical flow** (Szeliski 2010)¹
- \Rightarrow in contrast to the <u>correlation method</u> that is essentially an integral approach, the <u>optical flow method</u> is a differential approach (hence better suited for to images with continuous patterns) (Liu et al. 2015)²
- \Rightarrow Horn and Schunck (1981) gave the first optical flow equation (a.k.a. the brightness constraint equation)
- \Rightarrow the most famous algorithms developped to solve the optical flow equation are:
 - Lucas and Kanade (1981): sparse optical flow (Lucas-Kanade, 1981)
 ⇒ displacement vectors computed for "best-suited" image regions: corners & edges (good features!]
 - Farneback, 2003: dense optical flow
 ⇒ displacement vectors computed for every pixel in the image

¹Szeliski (2010) Computer Vision: Algorithms and Applications, Springer editions

²Liu et al. (2015) Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images, Exp. Fluids

- \Rightarrow the most general version of motion estimation is to compute an independent estimate of motion at each pixel \rightarrow generally known as **optical flow** (Szeliski 2010)¹
- \Rightarrow in contrast to the <u>correlation method</u> that is essentially an integral approach, the <u>optical flow method</u> is a differential approach (hence better suited for to images with continuous patterns) (Liu et al. 2015)²
- ⇒ Horn and Schunck (1981) gave the first optical flow equation (a.k.a. the brightness constraint equation)
- ⇒ the most famous algorithms developped to solve the optical flow equation are:
 - Lucas and Kanade (1981): sparse optical flow (Lucas-Kanade, 1981)
 ⇒ displacement vectors computed for "best-suited" image regions: corners & edges (good features!)
 - Farneback, 2003: dense optical flow
 - ⇒ displacement vectors computed for every pixel in the image

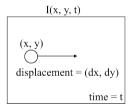
¹Szeliski (2010) Computer Vision: Algorithms and Applications, Springer editions

²Liu et al. (2015) Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images, Exp. Fluids

How is the optical flow equation obtained? (Horn & Schunck, 1981)

1. Define the optical flow problem

- ⇒ optical flow = motion of objects between consecutive frames
- \Rightarrow how can we recover displacements dx and dy?



$$I(x + dx, y + dy, t + dt)$$

$$(x + dx, y + dy)$$

$$time = t + dt$$

2. Brightness constancy assumption

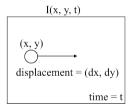
- ⇒ assume that pixel intensities are constant between consecutive frame
- NB: this assumption is valid for small time difference between frames (dt), and for pixels in a small region (small dx, dt),

$$(x,y,t) = I(x+dx,y+dy,t+dt)$$
 (1)

How is the optical flow equation obtained? (Horn & Schunck, 1981)

1. Define the optical flow problem

- ⇒ optical flow = motion of objects between consecutive frames
- \Rightarrow how can we recover displacements dx and dy?



$$I(x + dx, y + dy, t + dt)$$

$$(x + dx, y + dy)$$

$$time = t + dt$$

2. Brightness constancy assumption

 \Rightarrow assume that pixel intensities are constant between consecutive frames

NB: this assumption is valid for small time difference between frames (dt), and for pixels in a small region (small dx, dt)

$$I(x,y,t) = I(x+dx,y+dy,t+dt)$$
 (1)

Motion estimation 3. optical flow methods

2. Taylor Series Approximation of the right-hand side

 \Rightarrow approximate the right-hand side of equation (1) with the 1st order Taylor series

Reminder

function f(x) is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point (wikipedia)

Motion estimation 3. optical flow methods

2. Taylor Series Approximation of the right-hand side

 \Rightarrow approximate the right-hand side of equation (1) with the 1st order Taylor series

Reminder

 \Rightarrow the Taylor series is an extremely powerful tool for approximating functions as polynomials

 \Rightarrow the Taylor series of a function f(x) is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point (wikipedia)

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f''(a)}{n!}(x-a)^n$$

Motion estimation 3. optical flow methods

2. Taylor Series Approximation of the right-hand side

 \Rightarrow approximate the right-hand side of equation (1) with the 1st order Taylor series

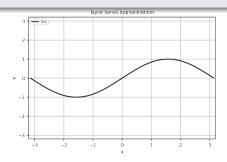
- \Rightarrow the Taylor series is an extremely powerful tool for approximating functions as polynomials
- \Rightarrow the Taylor series of a function f(x) is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point (wikipedia)

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f''(a)}{n!}(x-a)^n$$

 \Rightarrow approximate the right-hand side of equation (1) with the 1st order Taylor series

- \Rightarrow the Taylor series is an extremely powerful tool for approximating functions as polynomials
- \Rightarrow the Taylor series of a function f(x) is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point (wikipedia)

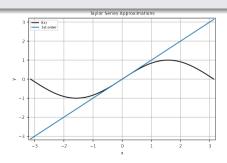
$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^n(a)}{n!}(x-a)^n$$



 \Rightarrow approximate the right-hand side of equation (1) with the 1st order Taylor series

- \Rightarrow the Taylor series is an extremely powerful tool for approximating functions as polynomials
- \Rightarrow the Taylor series of a function f(x) is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point (wikipedia)

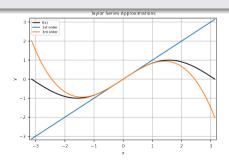
$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^n(a)}{n!}(x-a)^n$$



 \Rightarrow approximate the right-hand side of equation (1) with the 1st order Taylor series

- \Rightarrow the Taylor series is an extremely powerful tool for approximating functions as polynomials
- \Rightarrow the Taylor series of a function f(x) is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point (wikipedia)

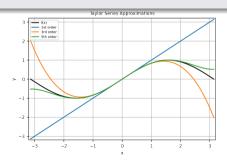
$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f''(a)}{n!}(x-a)^n$$



 \Rightarrow approximate the right-hand side of equation (1) with the 1st order Taylor series

- \Rightarrow the Taylor series is an extremely powerful tool for approximating functions as polynomials
- \Rightarrow the Taylor series of a function f(x) is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point (wikipedia)

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^n(a)}{n!}(x-a)^n$$



⇒ approximate the right-hand side of equation (1) with the 1st order Taylor series

Reminder (continued)

- ⇒ the Taylor series is an extremely powerful tool for approximating functions as polynomials
- \Rightarrow the Taylor series of a function f(x) is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point (wikipedia)

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f''(a)}{n!}(x-a)^n$$

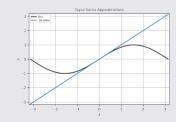
 \Rightarrow EX: 1st order Taylor approximation of an image profile I(x), centered around x=0 (a=0):

$$I(x) \approx I(a) + I'(a)(x - a)$$

$$\approx I(a) + \frac{d}{dx}I(a)(x - a)$$

$$\approx I(0) + \frac{d}{dx}I(0)x$$

$$\approx b + ax$$



 \Rightarrow approximate the right-hand side of equation (1) with the 1st order Taylor series

$$I(x,y,t) = I(x+dx,y+dy,t+dt)$$
 (1)

Recall 1st order Taylor general approximation

$$f(x) \approx f(a) + f'(a)(x - a)$$

The right-hand side can therefore be approximated as

$$I(x + dx, y + dy, t + dt) \approx I(x, y, t) + \frac{\partial I}{\partial x}(x + dx - x) + \frac{\partial I}{\partial y}(y + dy - y) + \frac{\partial I}{\partial t}(t + dt - t)$$
$$\approx I(x, y, t) + \frac{\partial I}{\partial x}dx + \frac{\partial I}{\partial y}dy + \frac{\partial I}{\partial t}dt$$

Replacing the approximation inside equation (1), and canceling out the I(x, y, t) term on both sides gives

$$dx + \frac{\partial I}{\partial y}dy + \frac{\partial I}{\partial t}dt = 0$$
(2)

 \Rightarrow approximate the right-hand side of equation (1) with the 1st order Taylor series

$$I(x,y,t) = I(x+dx,y+dy,t+dt)$$
 (1)

Recall 1st order Taylor general approximation:

$$f(x) \approx f(a) + f'(a)(x - a)$$

The right-hand side can therefore be approximated as:

$$I(x + dx, y + dy, t + dt) \approx I(x, y, t) + \frac{\partial I}{\partial x}(x + dx - x) + \frac{\partial I}{\partial y}(y + dy - y) + \frac{\partial I}{\partial t}(t + dt - t)$$
$$\approx I(x, y, t) + \frac{\partial I}{\partial x}dx + \frac{\partial I}{\partial y}dy + \frac{\partial I}{\partial t}dt$$

Replacing the approximation inside equation (1), and canceling out the I(x, y, t) term on both sides gives

$$dx + \frac{\partial I}{\partial y}dy + \frac{\partial I}{\partial t}dt = 0$$
 (2)

 \Rightarrow approximate the right-hand side of equation (1) with the 1st order Taylor series

$$I(x,y,t) = I(x+dx,y+dy,t+dt)$$
 (1)

Recall 1st order Taylor general approximation:

$$f(x) \approx f(a) + f'(a)(x - a)$$

The right-hand side can therefore be approximated as:

$$I(x + dx, y + dy, t + dt) \approx I(x, y, t) + \frac{\partial I}{\partial x}(x + dx - x) + \frac{\partial I}{\partial y}(y + dy - y) + \frac{\partial I}{\partial t}(t + dt - t)$$
$$\approx I(x, y, t) + \frac{\partial I}{\partial x}dx + \frac{\partial I}{\partial y}dy + \frac{\partial I}{\partial t}dt$$

Replacing the approximation inside equation (1), and canceling out the I(x, y, t) term on both sides gives:

$$dx + \frac{\partial I}{\partial y}dy + \frac{\partial I}{\partial t}dt = 0$$
 (2)

Motion estimation 3. optical flow methods

2. Taylor Series Approximation of the right-hand side

 \Rightarrow approximate the right-hand side of equation (1) with the 1st order Taylor series

$$I(x,y,t) = I(x+dx,y+dy,t+dt)$$
 (1)

Recall 1st order Taylor general approximation:

$$f(x) \approx f(a) + f'(a)(x - a)$$

The right-hand side can therefore be approximated as:

$$I(x + dx, y + dy, t + dt) \approx I(x, y, t) + \frac{\partial I}{\partial x}(x + dx - x) + \frac{\partial I}{\partial y}(y + dy - y) + \frac{\partial I}{\partial t}(t + dt - t)$$
$$\approx I(x, y, t) + \frac{\partial I}{\partial x}dx + \frac{\partial I}{\partial y}dy + \frac{\partial I}{\partial t}dt$$

Replacing the approximation inside equation (1), and canceling out the I(x, y, t) term on both sides gives:

$$\frac{\partial I}{\partial x}dx + \frac{\partial I}{\partial y}dy + \frac{\partial I}{\partial t}dt = 0$$
 (2)

 \Rightarrow dividing equation (2) by dt gives:

$$\frac{\partial I}{\partial x}\frac{dx}{dt} + \frac{\partial I}{\partial y}\frac{dy}{dt} + \frac{\partial I}{\partial t}\frac{dt}{dt} = 0$$

where:

- $\frac{dx}{dt} = u$ and $\frac{dy}{dt} = v$ are the displacement vectors
- $\frac{\partial I}{\partial x}$, $\frac{\partial I}{\partial y}$, and $\frac{\partial I}{\partial t}$ are the <u>image gradients</u> along the horizontal axis, the vertical axis, and time
- ⇒ the **optical flow equation** is therefore defined as

$$\frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \frac{\partial I}{\partial t} = 0$$
 (3)

1 equation, 2 unknowns! \Rightarrow underdetermined

 \Rightarrow dividing equation (2) by dt gives:

$$\frac{\partial I}{\partial x}\frac{dx}{dt} + \frac{\partial I}{\partial y}\frac{dy}{dt} + \frac{\partial I}{\partial t}\frac{dt'}{dt} = 0$$

where:

- $\frac{dx}{dt} = u$ and $\frac{dy}{dt} = v$ are the displacement vectors
- $\frac{\partial I}{\partial x}$, $\frac{\partial I}{\partial y}$, and $\frac{\partial I}{\partial t}$ are the image gradients along the horizontal axis, the vertical axis, and time
- ⇒ the **optical flow equation** is therefore defined as

$$\frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \frac{\partial I}{\partial t} = 0$$
 (3)

1 equation, 2 unknowns! \Rightarrow underdetermined

 \Rightarrow dividing equation (2) by dt gives:

$$\frac{\partial I}{\partial x}\frac{dx}{dt} + \frac{\partial I}{\partial y}\frac{dy}{dt} + \frac{\partial I}{\partial t}\frac{dt'}{dt} = 0$$

where:

- $\frac{dx}{dt} = u$ and $\frac{dy}{dt} = v$ are the displacement vectors
- $\frac{\partial I}{\partial x}$, $\frac{\partial I}{\partial y}$, and $\frac{\partial I}{\partial t}$ are the image gradients along the horizontal axis, the vertical axis, and time

⇒ the optical flow equation is therefore defined as

$$\frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \frac{\partial I}{\partial t} = 0$$
 (3)

1 equation, 2 unknowns! \Rightarrow underdetermine

 \Rightarrow dividing equation (2) by dt gives:

$$\frac{\partial I}{\partial x}\frac{dx}{dt} + \frac{\partial I}{\partial y}\frac{dy}{dt} + \frac{\partial I}{\partial t}\frac{dt'}{dt} = 0$$

where:

- $\frac{dx}{dt} = u$ and $\frac{dy}{dt} = v$ are the displacement vectors
- $\frac{\partial I}{\partial x}$, $\frac{\partial I}{\partial y}$, and $\frac{\partial I}{\partial t}$ are the image gradients along the horizontal axis, the vertical axis, and time
- ⇒ the optical flow equation is therefore defined as :

$$\frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \frac{\partial I}{\partial t} = 0$$
 (3)

1 equation, 2 unknowns! \Rightarrow underdetermined

 \Rightarrow dividing equation (2) by dt gives:

$$\frac{\partial I}{\partial x}\frac{dx}{dt} + \frac{\partial I}{\partial y}\frac{dy}{dt} + \frac{\partial I}{\partial t}\frac{dt}{dt} = 0$$

where:

- $\frac{dx}{dt} = u$ and $\frac{dy}{dt} = v$ are the displacement vectors
- $\frac{\partial I}{\partial x}$, $\frac{\partial I}{\partial y}$, and $\frac{\partial I}{\partial t}$ are the image gradients along the horizontal axis, the vertical axis, and time
- ⇒ the optical flow equation is therefore defined as :

$$\frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \frac{\partial I}{\partial t} = 0$$
 (3)

1 equation, 2 unknowns! \Rightarrow underdetermined

- \Rightarrow most famous approach is the Lucas & Kanade, 1981 method
- \rightarrow the method assumes that pixels in a small neighbood have similar motion, hence a 3x3 window around the central pixel gives 9 optical flow equations

To simplify the reading, let's rename the variables in the optical flow equation:

$$\frac{\partial I}{\partial x} = dI_X(=$$
image horizontal gradient, compute with convolution kernel $\frac{\partial I}{\partial y} = dI_Y(=$ image vertical gradient, compute with convolution kernel!) $\frac{\partial I}{\partial x} = dI_t = I_t[x,y] - I_{t+dt}[x,y]$

 \rightarrow the 9 optical flow equations can therefore be expressed as a system of equations:

$$\begin{cases} dI_{x_1}u + dI_{y_1}v &= -dI_1 \\ \vdots &\vdots &= \vdots \\ dI_{x_9}u + dI_{y_9}v &= -dI_1 \end{cases}$$

- ⇒ most famous approach is the Lucas & Kanade, 1981 method
- \rightarrow the method assumes that pixels in a small neighbood have similar motion, hence a 3x3 window around the central pixel gives 9 optical flow equations

To simplify the reading, let's rename the variables in the optical flow equation:

$$\frac{\partial I}{\partial x} = dl_x (=$$
image horizontal gradient, compute with convolution kernel $\frac{\partial I}{\partial y} = dl_y (=$ image vertical gradient, compute with convolution kernel!) $\frac{\partial I}{\partial t} = dl_t = l_t[x,y] - l_{t+dt}[x,y]$

 \rightarrow the 9 optical flow equations can therefore be expressed as a system of equations:

$$\begin{cases} dI_{x_1} u + dI_{y_1} v &= -dI_{t_1} \\ \vdots &\vdots &= \vdots \\ dI_{x_9} u + dI_{y_9} v &= -dI_{t_4} \end{cases}$$

- ⇒ most famous approach is the Lucas & Kanade, 1981 method
- \rightarrow the method assumes that pixels in a small neighbood have similar motion, hence a 3x3 window around the central pixel gives 9 optical flow equations

To simplify the reading, let's rename the variables in the optical flow equation

$$\frac{\partial I}{\partial x} = dI_x$$
 (=image horizontal gradient, compute with convolution kernell) $\frac{\partial I}{\partial y} = dI_y$ (=image vertical gradient, compute with convolution kernell) $\frac{\partial I}{\partial y} = dI_z = I_z[x,y] - I_{z \in \mathcal{D}}[x,y]$

ightarrow the 9 optical flow equations can therefore be expressed as a system of equations:

$$\begin{cases} dI_{x_1} u + dI_{y_1} v &= -dI_{t_1} \\ \vdots &\vdots &= \vdots \\ dI_{x_9} u + dI_{y_9} v &= -dI_{t_5} \end{cases}$$

- \Rightarrow most famous approach is the Lucas & Kanade, 1981 method
- \rightarrow the method assumes that pixels in a small neighbood have similar motion, hence a 3x3 window around the central pixel gives 9 optical flow equations

$$\frac{\partial I}{\partial x}=dI_x(=$$
image horizontal gradient, compute with convolution kernel!)
$$\frac{\partial I}{\partial y}=dI_y(=$$
image vertical gradient, compute with convolution kernel!)

To simplify the reading, let's rename the variables in the optical flow equation:

$$\frac{\partial I}{\partial t} = dI_t = I_t[x, y] - I_{t+dt}[x, y]$$

→ the 9 optical flow equations can therefore be expressed as a system of equations:

$$\begin{cases} dI_{x_1} u + dI_{y_1} v &= -dI_{t_1} \\ \vdots &\vdots &= \vdots \\ dI_{x_9} u + dI_{y_9} v &= -dI_{t_6} \end{cases}$$

- ⇒ most famous approach is the Lucas & Kanade, 1981 method
- \rightarrow the method assumes that pixels in a small neighbood have similar motion, hence a 3x3 window around the central pixel gives 9 optical flow equations

To simplify the reading, let's rename the variables in the optical flow equation:

$$\begin{split} &\frac{\partial I}{\partial x} = dI_x(=&\text{image horizontal gradient, compute with convolution kernel!})\\ &\frac{\partial I}{\partial y} = dI_y(=&\text{image vertical gradient, compute with convolution kernel!})\\ &\frac{\partial I}{\partial t} = dI_t = I_t[x,y] - I_{t+dt}[x,y] \end{split}$$

 \rightarrow the 9 optical flow equations can therefore be expressed as a system of equations:

$$\begin{cases} dI_{x_1}u + dI_{y_1}v &= -dI_{t_1} \\ \vdots &\vdots &= \vdots \\ dI_{x_9}u + dI_{y_9}v &= -dI_{t_9} \end{cases}$$

 \rightarrow the system of equations can be written in matrix form:

$$A\nu = b$$
with: $A = \begin{bmatrix} f_{x1} & f_{y1} \\ \vdots & \vdots \\ f_{x9} & f_{y9} \end{bmatrix}$, $\nu = \begin{bmatrix} u \\ v \end{bmatrix}$, and $b = \begin{bmatrix} -f_{t1} \\ \vdots \\ -f_{t9} \end{bmatrix}$

 \Rightarrow the Lucas-Kanade algorithm solves for $\nu=[u,v]$ by minimizing the sum-squared error of the optical flow equations for each pixel in the chosen window (least square fit)

 $\overline{ ext{NB}}$: A is not square hence not inversable \Rightarrow trick is to multiply by its transform to make it square (\Rightarrow inversable):

$$A\nu = b$$

$$A^{T}A\nu = A^{T}b$$

$$(A^{T}A)^{-1}(A^{T}A)\nu = (A^{T}A)^{-1}A^{T}b$$

$$\nu = (A^{T}A)^{-1}A^{T}b$$

 \rightarrow the system of equations can be written in matrix form:

$$A\nu = b$$
with: $A = \begin{bmatrix} f_{x1} & f_{y1} \\ \vdots & \vdots \\ f_{xn} & f_{xn} \end{bmatrix}$, $\nu = \begin{bmatrix} u \\ v \end{bmatrix}$, and $b = \begin{bmatrix} -f_{t1} \\ \vdots \\ -f_{tn} \end{bmatrix}$

 \Rightarrow the Lucas-Kanade algorithm solves for $\nu = [u, v]$ by minimizing the sum-squared error of the optical flow equations for each pixel in the chosen window (least square fit)

 $\overline{ ext{NB}}$: A is not square hence not inversable \Rightarrow trick is to multiply by its transform to make it square (\Rightarrow inversable):

$$A\nu = b$$

$$A^{T}A\nu = A^{T}b$$

$$(A^{T}A)^{-1}(A^{T}A)\nu = (A^{T}A)^{-1}A^{T}b$$

$$\nu = (A^{T}A)^{-1}A^{T}b$$

 \rightarrow the system of equations can be written in matrix form:

$$A\nu = b$$
with: $A = \begin{bmatrix} f_{x1} & f_{y1} \\ \vdots & \vdots \\ f_{x9} & f_{y9} \end{bmatrix}$, $\nu = \begin{bmatrix} u \\ v \end{bmatrix}$, and $b = \begin{bmatrix} -f_{t1} \\ \vdots \\ -f_{t9} \end{bmatrix}$

 \Rightarrow the Lucas-Kanade algorithm solves for $\nu=[u,v]$ by minimizing the sum-squared error of the optical flow equations for each pixel in the chosen window (least square fit)

 $\underline{\rm NB}$: A is not square hence not inversable \Rightarrow trick is to multiply by its transform to make it square (\Rightarrow inversable):

$$A\nu = b$$

$$A^{T}A\nu = A^{T}b$$

$$(A^{T}A)^{-1}(A^{T}A)\nu = (A^{T}A)^{-1}A^{T}b$$

$$\nu = (A^{T}A)^{-1}A^{T}b$$

 \rightarrow the system of equations can be written in matrix form:

$$A\nu = b$$
with: $A = \begin{bmatrix} f_{x1} & f_{y1} \\ \vdots & \vdots \\ f_{x9} & f_{y9} \end{bmatrix}$, $\nu = \begin{bmatrix} u \\ v \end{bmatrix}$, and $b = \begin{bmatrix} -f_{t1} \\ \vdots \\ -f_{t9} \end{bmatrix}$

 \Rightarrow the Lucas-Kanade algorithm solves for $\nu = [u, v]$ by minimizing the sum-squared error of the optical flow equations for each pixel in the chosen window (least square fit)

 $\underline{\rm NB}$: A is not square hence not inversable \Rightarrow trick is to multiply by its transform to make it square (\Rightarrow inversable):

$$A\nu = b$$

$$A^{T}A\nu = A^{T}b$$

$$(A^{T}A)^{-1}(A^{T}A)\nu = (A^{T}A)^{-1}A^{T}b$$

$$\nu = (A^{T}A)^{-1}A^{T}b$$

Motion estimation
3. optical flow methods

Lucas & Kanade method (continued)

Beware, A^TA only invertable where eigen values λ_1 and $\lambda_2 > 0$:

```
⇒ inversable where image has "texture"
```

⇒ compute only for good features points, e.g. edges and corners! (e.g. Harris corners, Shi-Tomasi corners, ...)

Motion estimation 3. optical flow methods

Lucas & Kanade method (continued)

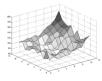
Beware, A^TA only invertable where eigen values λ_1 and $\lambda_2 > 0$:

- ⇒ inversable where image has "texture"
- \Rightarrow compute only for good <u>features points</u>, e.g. edges and corners! (e.g. Harris corners, Shi-Tomasi corners, ...)

Beware, A^TA only invertable where eigen values λ_1 and $\lambda_2 > 0$:

- \Rightarrow inversable where image has "texture"
- \Rightarrow compute only for good <u>features points</u>, e.g. edges and corners! (e.g. Harris corners, Shi-Tomasi corners, ...)

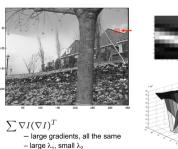
Low texture region



Beware, A^TA only invertable where eigen values λ_1 and $\lambda_2 > 0$:

- \Rightarrow inversable where image has "texture"
- \Rightarrow compute only for good <u>features points</u>, e.g. edges and corners! (e.g. Harris corners, Shi-Tomasi corners, ...)

Edge

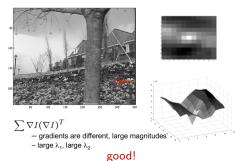


pretty good

Beware, A^TA only invertable where eigen values λ_1 and $\lambda_2 > 0$:

- \Rightarrow inversable where image has "texture"
- \Rightarrow compute only for good <u>features points</u>, e.g. edges and corners! (e.g. Harris corners, Shi-Tomasi corners, ...)

High textured region

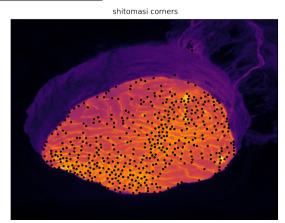


Motion estimation
3. optical flow methods

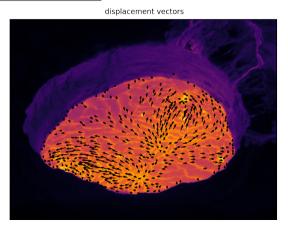
Demonstration:

- 1. Sparse Optical Flow (Lucas-Kanade algorithm)
 - ⇒ computes flow only for specific features (ex: Shi-Tomasi corners), i.e. sparse

- 1. Sparse Optical Flow (Lucas-Kanade algorithm)
 - \Rightarrow computes flow only for specific features (ex: Shi-Tomasi corners), i.e. sparse

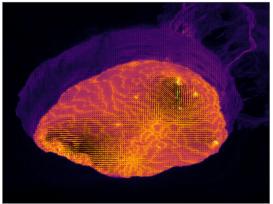


- 1. Sparse Optical Flow (Lucas-Kanade algorithm)
 - \Rightarrow computes flow only for specific features (ex: Shi-Tomasi corners), i.e. sparse



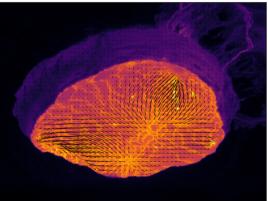
- 2. Dense Optical Flow (Farnebäck algorithm)
 - \Rightarrow computes flow for all pixels, i.e. dense
 - ⇒ approximation uses a second-order Taylor Expansion

sampling step 5



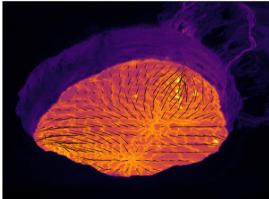
- 2. Dense Optical Flow (Farnebäck algorithm)
 - ⇒ computes flow for all pixels, i.e. dense
 - ⇒ approximation uses a second-order Taylor Expansion

sampling step 10



- 2. Dense Optical Flow (Farnebäck algorithm)
 - \Rightarrow computes flow for all pixels, i.e. dense
 - ⇒ approximation uses a second-order Taylor Expansion

sampling step 20



- 1. Motion estimation
 - 1. introduction
 - 2. cross-correlation methods
 - 3. optical flow methods

2. Install OpenCV

OpenCV (Open Source Computer Vision Library):

- ⇒ library of programming functions mainly aimed at real-time computer vision
- \Rightarrow written in C++ (primary interface), APIs in Python, Java, and Matlab

Installing OpenCV with Anaconda (conda-forge packages):

\$ conda install -c conda-forge opencv

Nota Bene

If the above command hangs or fails with error message "Solving environment: failed with initial frozen solve. Retrying with flexible solve", it is likely that there is dependency clash in the default conda environment.

- \Rightarrow Solution 1 (quick & dirty): update all packages and retry
- \$ conda update --all
- \$ conda install -c conda-forge opency
- ⇒ Solution 2 (clean): create a separate environment where OpenCV is to be installed
- \$ conda create --name <name>
- \$ activate <name>
- \$ conda install -c conda-forge opency

OpenCV (Open Source Computer Vision Library):

- ⇒ library of programming functions mainly aimed at real-time computer vision
- \Rightarrow written in C++ (primary interface), APIs in Python, Java, and Matlab

Installing OpenCV with Anaconda (conda-forge packages):

\$ conda install -c conda-forge opencv

Nota Bene

- If the above command hangs or fails with error message "Solving environment: failed with initial frozen solve. Retrying with flexible solve", it is likely that there is dependency clash in the default conda environment.
- ⇒ Solution 1 (quick & dirty): update all packages and retry
- \$ conda update --all
- \$ conda install -c conda-forge opency
- ⇒ Solution 2 (clean): create a separate environment where OpenCV is to be installed
- \$ conda create --name <name>
- \$ activate <name>
- \$ conda install -c conda-forge opency

OpenCV (Open Source Computer Vision Library):

- ⇒ library of programming functions mainly aimed at real-time computer vision
- \Rightarrow written in C++ (primary interface), APIs in Python, Java, and Matlab

Installing OpenCV with Anaconda (conda-forge packages):

\$ conda install -c conda-forge opencv

Nota Bene

If the above command hangs or fails with error message "Solving environment: failed with initial frozen solve. Retrying with flexible solve", it is likely that there is dependency clash in the default conda environment.

- ⇒ Solution 1 (quick & dirty): update all packages and retry
- \$ conda update --all
- \$ conda install -c conda-forge opency
- ⇒ Solution 2 (clean): create a separate environment where OpenCV is to be installed
- \$ conda create --name <name>
- \$ activate <name>
- \$ conda install -c conda-forge opency