Motion Estimation:

Digital Image Correlation & Optical Flow
Lecture 06

Computer Vision for Geosciences

2021-04-09

AVFN°MA DE
MEXICO

1/66

Table of Contents

1. Motion estimation
1. introduction
2. cross-correlation methods
3. optical flow methods

2. Install OpenCV

2 /66

Table of Contents

1. Motion estimation
1. introduction
2. cross-correlation methods
3. optical flow methods

3/66

Motion estimation
1. introduction

GOAL:
= estimate the 2D motion projected on the image plane by the objects moving in the 3D scene

4 /66

Motion estimation
1. introduction

GOAL:
= estimate the 2D motion projected on the image plane by the objects moving in the 3D scene

APPLICATIONS in geoscience:
= capture motion, with imagery from ground based cameras, UAV, satellites, etc.
= few examples:

= J|ava flows

= ash plumes

= dome growth

= glacier motion

= |andslides

= analogue modeling

= etc.

5/66

Motion estimation

1. introduction

Methods used to estimate image motion:

1. cross-correlation methods

= determine a displacement vector by maximizing the correlation peak from two successive images
= Digital Image Correlation (DIC) 12
— commonly used for measuring surface deformation

6 /66

https://en.wikipedia.org/wiki/Digital_image_correlation_and_tracking
https://en.wikipedia.org/wiki/Particle_image_velocimetry
https://en.wikipedia.org/wiki/Optical_flow

Motion estimation

1. introduction

Methods used to estimate image motion:

1. cross-correlation methods
= determine a displacement vector by maximizing the correlation peak from two successive images
= Digital Image Correlation (DIC) 12
— commonly used for measuring surface deformation
= Particle Image Velocimetry (PIV) 3
— commonly used for flow visualization, typically fluid seeded with tracer particles (experimental fluid mechanics)
NB: PIV is very similar to DIC in principle and implementation algorithm

7 /66

https://en.wikipedia.org/wiki/Digital_image_correlation_and_tracking
https://en.wikipedia.org/wiki/Particle_image_velocimetry
https://en.wikipedia.org/wiki/Optical_flow

Motion estimation

1. introduction

Methods used to estimate image motion:

1. cross-correlation methods
= determine a displacement vector by maximizing the correlation peak from two successive images
= Digital Image Correlation (DIC) 12
— commonly used for measuring surface deformation
= Particle Image Velocimetry (PIV) 3
— commonly used for flow visualization, typically fluid seeded with tracer particles (experimental fluid mechanics)
NB: PIV is very similar to DIC in principle and implementation algorithm

2. optical flow methods (OF)
= originally developed by comp. vision scientists to track objects motion (e.g., people and cars) in videos 4
= Sparse Optical Flow, e.g. Lucas-Kanade algorithm °

= Dense Optical Flow, e.g. Farnebick algorithm ©

8/66

https://en.wikipedia.org/wiki/Digital_image_correlation_and_tracking
https://en.wikipedia.org/wiki/Particle_image_velocimetry
https://en.wikipedia.org/wiki/Optical_flow

Motion estimation

1. introduction

Methods used to estimate image motion:

1. cross-correlation methods
= determine a displacement vector by maximizing the correlation peak from two successive images
= Digital Image Correlation (DIC) 12
— commonly used for measuring surface deformation

= Particle Image Velocimetry (PIV) 3
— commonly used for flow visualization, typically fluid seeded with tracer particles (experimental fluid mechanics)

NB: PIV is very similar to DIC in principle and implementation algorithm

2. optical flow methods (OF)
= originally developed by comp. vision scientists to track objects motion (e.g., people and cars) in videos

= Sparse Optical Flow, e.g. Lucas-Kanade algorithm °
= Dense Optical Flow, e.g. Farnebick algorithm ©

IPeters et al. (1983) Application of digital correlation methods to rigid body mechanics Opt. Eng. 22 738-42
2Pan et al. (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review

3Adrian (1991) Particle-imaging techniques for experimental fluid mechanics. Ann Rev Fluid Mech 23:261-304

“Horn and Schunck (1981) Determining optical flow. Artif Intell 17:185-204

®Lucas and Kanade (1981) An iterative image registration technique with an application to stereo vision. Proc. of Imaging Understanding

SFarnebick (2003) Two-frame motion estimation based on polynomial expansion, Proc. Scandinavian Conf. on Image Analysis
9/66

https://en.wikipedia.org/wiki/Digital_image_correlation_and_tracking
https://en.wikipedia.org/wiki/Particle_image_velocimetry
https://en.wikipedia.org/wiki/Optical_flow

Motion estimation

2. cross-correlation methods

Cross-correlation method to estimate motion:

10 /66

Motion estimation

2. cross-correlation methods

Cross-correlation method to estimate motion:

= analyze the displacement within 2 images acquired at different time

img A (t)

img B (t + At)

11/66

Motion estimation

2. cross-correlation methods

Cross-correlation method to estimate motion:

= analyze the displacement within 2 images acquired at different time
= analyze within discretized subsets (windows) of both images

img A (t)

img B (t + At)

12 /66

Motion estimation

2. cross-correlation methods

Cross-correlation method to estimate motion:

= analyze the displacement within 2 images acquired at different time
= analyze within discretized subsets (windows) of both images

img A (t) window img A ()

img B (t + At)

window img B (t + At)

13 /66

Motion estimation

2. cross-correlation methods

Cross-correlation method to estimate motion:

= analyze the displacement within 2 images acquired at different time
= analyze within discretized subsets (windows) of both images
= evaluate similarity degree between both subsets using a cross-correlation (CC) criterion

correlation map

window img A (t) correlation map

window img B (t + At)

- 0

img A (t)

img B (t + At) 20

50

60

14 /66

Motion estimation

2. cross-correlation methods

Cross-correlation method to estimate motion:

= analyze the displacement within 2 images acquired at different time

= analyze within discretized subsets (windows) of both images

= evaluate similarity degree between both subsets using a cross-correlation (CC) criterion
= the maximum correlation in each window corresponds to the displacement

img A (t) window img A (t) correlation map correlation map

img B (t + At)

window img B (t + At)

15 /66

Motion estimation

2. cross-correlation methods

Cross-correlation method to estimate motion:

= analyze the displacement within 2 images acquired at different time

= analyze within discretized subsets (windows) of both images

= evaluate similarity degree between both subsets using a cross-correlation (CC) criterion
= the maximum correlation in each window corresponds to the displacement

NB: the correlation-map is twice as big as the window sizes because windows can shift by their maximum size both horizontally and vertically

img A (t) window img A (t) correlation map correlation map

img B (t + At)

window img B (t + At)

16 /66

Motion estimation

2. cross-correlation methods

Cross-correlation method to estimate motion:
= loop over the entire image to recover the displacements

displacement vectors (A to B)

img A

correlation map

0.

NB: the above animation will only run with PDF readers having built-in JavaScript engine (ex: Adobe Reader, recent versions of Okular, etc.)
17 /66

Motion estimation

2. cross-correlation methods

NB 1: several correlation criterion can be used to evaluate the similarity degree

Table 1. Commonly used cross-correlation criterion.

CC correlation criterion Definition

Cross-correlation (CC) Cec = 2 E [F G yela ¥

Normalized cross-correlation (NCC) Cnee = Z Z [f(x”)J)g(x" Y }
= =it

Zero-normalized cross-correlation (ZNCC) Canee = i Z { U,y - fmA];A[:(x'/').;) — 8-l }
i=M =M

Table 2. Commonly used SSD correlation criterion.

SSD correlation criterion Definition
MM
Sum of squared differences (SSD) Cop= 3 3 [fCay) — gl ¥)I
M ye—ht
is (X.v ol
D i sum of squared di (NSSD) Cnssp = Z E [f(x 3;) & Vi, }
==

) — Gl =g
Zero-normalized sum of squared differences (ZNSSD) Cangsp = Z 2 w - W}
8

i=—M =M

from Pan et al. 2009
18/66

Motion estimation

2. cross-correlation methods

NB 1: several correlation criterion can be used to evaluate the similarity degree
NB 2: post-processing of displacement vectors allow to recover e.g. strain maps (local derivative calculation)

a 8-21 Sep 2006| [b a 18-21 Sep 2006 21-29 Sep
N P e 'y
y - =
(2) o
Strain
5
10 px
— L -5 i _ i 1
c d c _12-130ct . 13-150ct
& L o
2 -
e 294?7 Oct 07-12 Oct
-
ar () R
’ @
e
23-30 Okt 2006 15-23 Oct 23-30 Oct ZDOS‘
9 n il 9 e . T
e e <
ﬁ\\‘ : @) =18
Al

Colima volcano dome growth and coulée spreading (Walter et al. 2013)

(compression=green / extension=red)

19 /66

Motion estimation

3. optical flow methods

Optical-flow method to estimate motion:

=> the most general version of motion estimation is to compute an independent estimate of motion at each
pixel — generally known as optical flow (Szeliski 2010)*

20 /66

Motion estimation

3. optical flow methods

Optical-flow method to estimate motion:

=> the most general version of motion estimation is to compute an independent estimate of motion at each
pixel — generally known as optical flow (Szeliski 2010)*

= in contrast to the correlation method that is essentially an integral approach, the optical flow method is a

differential approach (hence better suited for to images with continuous patterns) (Liu et al. 2015)?

21 /66

Motion estimation

3. optical flow methods

Optical-flow method to estimate motion:

=> the most general version of motion estimation is to compute an independent estimate of motion at each
pixel — generally known as optical flow (Szeliski 2010)*

= in contrast to the correlation method that is essentially an integral approach, the optical flow method is a

differential approach (hence better suited for to images with continuous patterns) (Liu et al. 2015)?

= Horn and Schunck (1981) gave the first optical flow equation (a.k.a. the brightness constraint equation)

22 /66

Motion estimation

3. optical flow methods

Optical-flow method to estimate motion:

=> the most general version of motion estimation is to compute an independent estimate of motion at each
pixel — generally known as optical flow (Szeliski 2010)*

= in contrast to the correlation method that is essentially an integral approach, the optical flow method is a
differential approach (hence better suited for to images with continuous patterns) (Liu et al. 2015)?

= Horn and Schunck (1981) gave the first optical flow equation (a.k.a. the brightness constraint equation)

= the most famous algorithms developped to solve the optical flow equation are:

» Lucas and Kanade (1981): sparse optical flow (Lucas-Kanade, 1981)
= displacement vectors computed for "best-suited” image regions: corners & edges (good features!)

= Farneback, 2003: dense optical flow
= displacement vectors computed for every pixel in the image

TSzeliski (2010) Computer Vision: Algorithms and Applications, Springer editions

?Liu et al. (2015) Comparison between optical flow and cross-correlation methods for extraction of velocity fields from particle images, Exp. Fluids

23 /66

Motion estimation

3. optical flow methods

How is the optical flow equation obtained ? (Horn & Schunck, 1981)

1. Define the optical flow problem
= optical flow = motion of objects between consecutive frames
= how can we recover displacements dx and dy?
I(x, y, t) I(x +dx, y +dy, t+ dt)

(X,9) (x +dx, y +dy)

displacement = (dx, dy)

time =t time =t + dt

24 /66

Motion estimation

3. optical flow methods

How is the optical flow equation obtained ? (Horn & Schunck, 1981)

1. Define the optical flow problem
= optical flow = motion of objects between consecutive frames
= how can we recover displacements dx and dy?
I(x, y, t) I(x +dx, y +dy, t+ dt)

(X,9) (x +dx, y +dy)

displacement = (dx, dy)

time =t time =t + dt

2. Brightness constancy assumption
= assume that pixel intensities are constant between consecutive frames

NB: this assumption is valid for small time difference between frames (dt), and for pixels in a small region (small dx, dt)
I(x,y,t) = I(x +dx,y +dy, t + dt) (1)

25 /66

Motion estimation

3. optical flow methods

2. Taylor Series Approximation of the right-hand side
= approximate the right-hand side of equation (1) with the 1st order Taylor series

26 /66

https://en.wikipedia.org/wiki/Taylor_series

Motion estimation

3. optical flow methods

2. Taylor Series Approximation of the right-hand side
= approximate the right-hand side of equation (1) with the 1st order Taylor series

Reminder

= the Taylor series is an extremely powerful tool for approximating functions as polynomials

27 /66

https://en.wikipedia.org/wiki/Taylor_series

Motion estimation

3. optical flow methods

2. Taylor Series Approximation of the right-hand side
= approximate the right-hand side of equation (1) with the 1st order Taylor series

Reminder

= the Taylor series is an extremely powerful tool for approximating functions as polynomials
=> the Taylor series of a function f(x) is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point (wikipedia)

f'(a) ' (a)

f(a)
f(x) = f(a) + T(x —a)+

T (xfa)2+--'+T(xfa)"

28 /66

https://en.wikipedia.org/wiki/Taylor_series

Motion estimation

3. optical flow methods

2. Taylor Series Approximation of the right-hand side
= approximate the right-hand side of equation (1) with the 1st order Taylor series

Reminder

= the Taylor series is an extremely powerful tool for approximating functions as polynomials
=> the Taylor series of a function f(x) is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point (wikipedia)

f'(a) ' (a) ()

f(x) =f(a) + —(x —a) + (X*a)2+'-'+—(xfa)"
1! 2! n!
Taylor Series Approximations

3{—w
2
1

> 0
-1
-2
34

-3 -2 -1 0 1 2 3

x 29 /66

https://en.wikipedia.org/wiki/Taylor_series

Motion estimation

3. optical flow methods

2. Taylor Series Approximation of the right-hand side
= approximate the right-hand side of equation (1) with the 1st order Taylor series

Reminder

= the Taylor series is an extremely powerful tool for approximating functions as polynomials
=> the Taylor series of a function f(x) is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point (wikipedia)

f(x) = £(a) + #(X RO

2
T (x —a)" + R =

Taylor Series Approximations

x 30/66

https://en.wikipedia.org/wiki/Taylor_series

Motion estimation

3. optical flow methods

2. Taylor Series Approximation of the right-hand side
= approximate the right-hand side of equation (1) with the 1st order Taylor series

Reminder

= the Taylor series is an extremely powerful tool for approximating functions as polynomials
=> the Taylor series of a function f(x) is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point (wikipedia)

f(x):f(a)+%(xfa)Jer—(la)(xfa)ZJr--'wL—

Taylor Series Approximations

— storder
3 order

) _/
-3 -2 -1

https://en.wikipedia.org/wiki/Taylor_series

Motion estimation

3. optical flow methods

2. Taylor Series Approximation of the right-hand side
= approximate the right-hand side of equation (1) with the 1st order Taylor series

Reminder

= the Taylor series is an extremely powerful tool for approximating functions as polynomials
=> the Taylor series of a function f(x) is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point (wikipedia)

f(x) = £(a) + #(X RO

2
T (x —a)" + R =

Taylor Series Approximations

x 32/66

https://en.wikipedia.org/wiki/Taylor_series

Motion estimation

3. optical flow methods

2. Taylor Series Approximation of the right-hand side
= approximate the right-hand side of equation (1) with the 1st order Taylor series

= the Taylor series is an extremely powerful tool for approximating functions as polynomials
=> the Taylor series of a function f(x) is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point (wikipedia)

f'(a f''(a
F(x)zf(a)-%—%(x—a)-%- (2)

2
o TATE

= EX: st order Taylor approximation of an image profile /(x), centered around x=0 (a=0):

Teylor Series Approximations

I(x) = I(a) + I'(a)(x — a)

Q

I d I
(a)+ —Ia)(x — 2)

Q2

1(0 dIO
(©)+ —I(0)x

~ b+ ax

33

66

https://en.wikipedia.org/wiki/Taylor_series

Motion estimation

3. optical flow methods

2. Taylor Series Approximation of the right-hand side

= approximate the right-hand side of equation (1) with the 1st order Taylor series

I(x,y,t) = I(x+ dx,y + dy, t + dt) (1)

34 /66

Motion estimation

3. optical flow methods

2. Taylor Series Approximation of the right-hand side

= approximate the right-hand side of equation (1) with the 1st order Taylor series
I(x,y,t) = I(x+ dx,y + dy, t + dt) (1)

Recall 1st order Taylor general approximation:
f(x) ~ f(a) + f'(a)(x — a)

35 /66

Motion estimation
3. optical flow methods

2. Taylor Series Approximation of the right-hand side

= approximate the right-hand side of equation (1) with the 1st order Taylor series
I(x,y,t) = I(x+ dx,y + dy, t + dt) (1)

Recall 1st order Taylor general approximation:

f(x) ~ f(a) + f'(a)(x — a)
The right-hand side can therefore be approximated as:

I(x +dx,y +dy,t+dt) =~ I(x t)+ﬂ(x+dx—x)—|—ﬂ(+dy —)—l—g(t—&-dt—t)
y Y Y, ~ » Y Ax ay y y y ot
ol ol

ol
~ I(X,y, t) + &dX"‘ ady—&- adt

36 /66

Motion estimation
3. optical flow methods

2. Taylor Series Approximation of the right-hand side

= approximate the right-hand side of equation (1) with the 1st order Taylor series
I(x,y,t) = I(x+ dx,y + dy, t + dt) (1)

Recall 1st order Taylor general approximation:

f(x) = f(a) + f'(a)(x — a)

The right-hand side can therefore be approximated as:
ol ol ol
I(x+dx,y +dy,t+dt) ~I(x,y,t)+ a(x—l—dx—x)—ka(y—i—dy—y)—i— a(t—&-dt— t)

ol ol ol
~ I(X,y, t) + &dX"‘ ady—&- adt

Replacing the approximation inside equation (1), and canceling out the /(x, y, t) term on both sides gives:

ol ol ol
adX‘F ady+adt—0 (2)

37/66

Motion estimation

3. optical flow methods

2. Taylor Series Approximation of the right-hand side

= dividing equation (2) by dt gives:

al dx | 9l dy algg_o
Ox dt = Oy dt Otdt

38 /66

Motion estimation

3. optical flow methods

2. Taylor Series Approximation of the right-hand side

= dividing equation (2) by dt gives:

al dx | 9l dy algg_o
Ox dt = Oy dt Otdt

where:

. % = u and % = v are the displacement vectors

39 /66

Motion estimation

3. optical flow methods

2. Taylor Series Approximation of the right-hand side

= dividing equation (2) by dt gives:

al dx | 9l dy algg_o
Ox dt = Oy dt Otdt

where:
= % = u and % = v are the displacement vectors
o 2L 9L and 9L gre the image gradients along the horizontal axis, the vertical axis, and time
Ox' Oy ot

40 /66

Motion estimation

3. optical flow methods

2. Taylor Series Approximation of the right-hand side

= dividing equation (2) by dt gives:

al dx | 9l dy algg_o
Ox dt = Oy dt Otdt

where:
= % = u and % = v are the displacement vectors
. O ol

ox' Dy and % are the image gradients along the horizontal axis, the vertical axis, and time

= the optical flow equation is therefore defined as :

ol ol ol
a—xu—l—@v—i—a—o 3)

41 /66

Motion estimation

3. optical flow methods

2. Taylor Series Approximation of the right-hand side

= dividing equation (2) by dt gives:

al dx | 9l dy algg_o
Ox dt = Oy dt Otdt

where:
. % = u and % = v are the displacement vectors
. O ol

ox' Dy and % are the image gradients along the horizontal axis, the vertical axis, and time

= the optical flow equation is therefore defined as :

ol ol ol
a—xu—l—@v—i—a—o 3)

[1 equation, 2 unknowns! = underdetermined]

42 /66

Motion estimation

3. optical flow methods

How is the optical flow equation solved ?

43 /66

Motion estimation

3. optical flow methods

How is the optical flow equation solved ?

= most famous approach is the Lucas & Kanade, 1981 method

44 / 66

Motion estimation

3. optical flow methods

How is the optical flow equation solved ?

= most famous approach is the Lucas & Kanade, 1981 method

— the method assumes that pixels in a small neighbood have similar motion, hence a 3x3 window around the
central pixel gives 9 optical flow equations

45 / 66

Motion estimation

3. optical flow methods

How is the optical flow equation solved ?

= most famous approach is the Lucas & Kanade, 1981 method

— the method assumes that pixels in a small neighbood have similar motion, hence a 3x3 window around the
central pixel gives 9 optical flow equations

ol
8— = dly(=image horizontal gradient, compute with convolution kernel!)
X
ol . X . . .
To simplify the reading, let's rename the variables in the optical flow equation: Biy = dly(=image vertical gradient, compute with convolution kernel!)
al
Fri dle = le[x, y] = levaelx, vl

46 / 66

Motion estimation

3. optical flow methods

How is the optical flow equation solved ?

= most famous approach is the Lucas & Kanade, 1981 method

— the method assumes that pixels in a small neighbood have similar motion, hence a 3x3 window around the
central pixel gives 9 optical flow equations

ol
8— = dly(=image horizontal gradient, compute with convolution kernel!)
X
ol . X . . .
To simplify the reading, let's rename the variables in the optical flow equation: Biy = dly(=image vertical gradient, compute with convolution kernel!)
al
Fri dle = le[x, y] = levaelx, vl

— the 9 optical flow equations can therefore be expressed as a system of equations:

dhyu+dl,v = —dl,

dhou+ dly,v = —dl,

47 / 66

Motion estimation

3. optical flow methods

Lucas & Kanade method (continued)

— the system of equations can be written in matrix form:

Av=b (4)
fa fin —f
with: A= v = M and b =
fx9 6;9 —.frg

48 / 66

Motion estimation

3. optical flow methods

Lucas & Kanade method (continued)

— the system of equations can be written in matrix form:

Av=b (4)
fa fin —f
with: A= | : : ,V:M,andb:
f>;9 6;9 —.frg

= the Lucas-Kanade algorithm solves for v = [u, v] by minimizing the sum-squared error of the optical flow
equations for each pixel in the chosen window (least square fit)

49 /66

Motion estimation

3. optical flow methods

Lucas & Kanade method (continued)

— the system of equations can be written in matrix form:

Av=b (4)
fa fin —f
with: A= | : : ,V:M,andb:
f>;9 6;9 —.frg

= the Lucas-Kanade algorithm solves for v = [u, v] by minimizing the sum-squared error of the optical flow
equations for each pixel in the chosen window (least square fit)

NB: A is not square hence not inversable = trick is to multiply by its transform to make it square (= inversable):
Av=5>b
ATAv=ATb
(ATA)Y AT A = (ATA)1ATH
v=(ATA)tATh

50 /66

Motion estimation

3. optical flow methods

Lucas & Kanade method (continued)

— the system of equations can be written in matrix form:

Av=b (4)
fa fin —f
with: A= | : : ,V:M,andb:
f>;9 6;9 —.frg

= the Lucas-Kanade algorithm solves for v = [u, v] by minimizing the sum-squared error of the optical flow
equations for each pixel in the chosen window (least square fit)

NB: A is not square hence not inversable = trick is to multiply by its transform to make it square (= inversable):
Av=5>b
ATAv=ATb
(ATA)Y AT A = (ATA)1ATH
v=(ATA)tATh

51/66

Motion estimation

3. optical flow methods

Lucas & Kanade method (continued)

Beware, ATA only invertable where eigen values A1 and A > 0:

52 /66

Motion estimation

3. optical flow methods

Lucas & Kanade method (continued)

Beware, ATA only invertable where eigen values A1 and A > 0:

= inversable where image has "texture”
= compute only for good features points, e.g. edges and corners ! (e.g. Harris corners, Shi-Tomasi corners, ...)

53 /66

Motion estimation

3. optical flow methods

Lucas & Kanade method (continued)

Beware, ATA only invertable where eigen values A1 and A > 0:

= inversable where image has "texture”
= compute only for good features points, e.g. edges and corners ! (e.g. Harris corners, Shi-Tomasi corners, ...)

Low texture region

S vivn”
— gradients have small magnitude)
—small A, small &,

bad! 54 /66

Motion estimation

3. optical flow methods

Lucas & Kanade method (continued)

Beware, ATA only invertable where eigen values A1 and A > 0:

= inversable where image has "texture”
= compute only for good features points, e.g. edges and corners ! (e.g. Harris corners, Shi-Tomasi corners, ...)

Edge

S vivn”
— large gradients, all the same
—large A, small &,

pretty good
55 /66

Motion estimation

3. optical flow methods

Lucas & Kanade method (continued)

Beware, ATA only invertable where eigen values A1 and A > 0:

= inversable where image has "texture”
= compute only for good features points, e.g. edges and corners ! (e.g. Harris corners, Shi-Tomasi corners, ...)

High textured region

S vivnt N
— gradients are different, large magnitudes’ -
—large A,, large A,

good!
56 /66

Motion estimation

3. optical flow methods

Demonstration:

57 /66

Motion estimation

3. optical flow methods

Demonstration:

1. Sparse Optical Flow (Lucas-Kanade algorithm)

= computes flow only for specific features (ex: Shi-Tomasi corners), i.e. sparse

shitomasi corners

58 /66

Motion estimation

3. optical flow methods

Demonstration:

1. Sparse Optical Flow (Lucas-Kanade algorithm)

= computes flow only for specific features (ex: Shi-Tomasi corners), i.e. sparse

displacement vectors

59 /66

Motion estimation

3. optical flow methods

Demonstration:

2. Dense Optical Flow (Farneback algorithm)

= computes flow for all pixels, i.e. dense
=> approximation uses a second-order Taylor Expansion
sampling step 5

60 /66

Motion estimation

3. optical flow methods

Demonstration:

2. Dense Optical Flow (Farneback algorithm)

= computes flow for all pixels, i.e. dense
=> approximation uses a second-order Taylor Expansion
sampling step 10

61 /66

Motion estimation

3. optical flow methods

Demonstration:

2. Dense Optical Flow (Farneback algorithm)

= computes flow for all pixels, i.e. dense
=> approximation uses a second-order Taylor Expansion
sampling step 20

62 /66

Table of Contents

2. Install OpenCV

63 /66

Install OpenCV

OpenCV (Open Source Computer Vision Library):
= library of programming functions mainly aimed at real-time computer vision
= written in C++ (primary interface), APls in Python, Java, and Matlab

64 /66

https://opencv.org/
https://anaconda.org/conda-forge/opencv

Install OpenCV

OpenCV (Open Source Computer Vision Library):
= library of programming functions mainly aimed at real-time computer vision
= written in C++ (primary interface), APls in Python, Java, and Matlab

Installing OpenCV with Anaconda (conda-forge packages):

$ conda install -c conda-forge opencv

65 /66

https://opencv.org/
https://anaconda.org/conda-forge/opencv

Install OpenCV

OpenCV (Open Source Computer Vision Library):
= library of programming functions mainly aimed at real-time computer vision
= written in C++ (primary interface), APls in Python, Java, and Matlab

Installing OpenCV with Anaconda (conda-forge packages):

$ conda install -c conda-forge opencv

If the above command hangs or fails with error message "Solving environment: failed with initial frozen solve. Retrying with flexible solve",
it is likely that there is dependency clash in the default conda environment.

= Solution 1 (quick & dirty): update all packages and retry

$ conda update --all

$ conda install -c conda-forge opencv

= Solution 2 (clean): create a separate environment where OpenCV is to be installed

$ conda create --name <name>
$ activate <name>
$ conda install -c conda-forge opencv

66 /66

https://opencv.org/
https://anaconda.org/conda-forge/opencv

	Motion estimation
	introduction
	cross-correlation methods
	optical flow methods

	Install OpenCV

	anm0:

