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= Images in pixel space describe a point in a high dimensional space
= |f we ignore spatial relation of pixels it is a point in a space with wxhxc dimensions
= Small changes in the real world scene lead to big changes in pixel space

= In this scene we see two times the same location in Berlin from two slightly different
angles at different times.
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= Two times the same image, with and without noise.
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= Simple linear transformations in object space (e.g translation of an object), moves the
data point in pixel space to a completely different location (highly non-linear)
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Categorize image content = |f we want to interpret what is happening in the image we need a representation in a
space that allows a similarity measure

= Two images or image patches that show the same thing with respect to our task should
be similar in representation space

= We want to be able to compare images or image patches for various reasons: categorize
image content, ...
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Krizhevsky et al, ImageNet Classification with Deep Convolutional Neural Networks
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= finding and tracking objects, ...

Finding/tracking objects

David G.Lowe, Distinctive Image Features from Scale-Invariant Keypoints
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Segmentation

Badrinarayanan et al, SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
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= segmentaion of regions, ...



= |f we want to interpret what is happening in the image we need a representation in a
space that allows a similarity measure

= Two images or image patches that show the same thing with respect to our task should
be similar in representation space

Feature
® Abstract representation of image content

® Encodes relevant properties

® Describes full image or parts of it
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= We need to find more abstract representations that describe the content of an image
invariant to properties that are irrelavant to the task.

Invariance
® Translation
® Rotation

e Scale

[llumination

Specification

9/32



= Potential properties of entities we want to describe.

Properties
® Shape
® Color
® Texture
® | ocation

e Motion

10/32



Gradients

original sobel x sobel y sobel mag
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Even small lighting changes would make huge differences in pixel space.
Gradient images alleviate that a little, but magnitude still varies with lighting.
Contain information about texture and shape.

Invariant to color.
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= We use the edge image as basis and partition it into a grid of cells.

= For every cell we count the 'votes' for every pixel in the cell. l.e. add a weighted entry
into a histogram with the gradient direction of that pixel.

= Histogram entries are a vector that describes content of the image patch (cell).
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Gradient Orientation

® (Concatenate cell histograms for description of larger region
® Use 180 degree binning to ignore edge direction

* Normalize histograms for region (contrast normalization)
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= HOG is an image descriptor based on histograms of gradients

HOG (Histograms of oriented gradients)* = |t is one of many descriptors based on gradient images

= Picture shows a visualization from the paper, which | recommend to read as it is
comparably easy to understand but insightful.

'Navneet Dalal and Bill Triggs, Histograms of oriented gradients for human detection
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Which parts of the image are most descriptive = We do not necessarily want to describe the whole image.

= Which parts are most descriptive?
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Which parts of the image are most descriptive = We do not necessarily want to describe the whole image.

= Which parts are most descriptive?
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Which parts of the image are most descriptive = We do not necessarily want to describe the whole image.

= Which parts are most descriptive?

= Edges are more interesting than no edges.

=

LEE
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Which parts of the image are most descriptive’ = We do not necessarily want to describe the whole image.

= Which parts are most descriptive?

= Corners are even more interesting.
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How to compute uniqueness of region?
e Compare patch with all other image patches of all images?
® We can compare the patch with all other patches within the same image (self-difference).

® To compute self-difference for the whole image would be very expensive.
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Approximate self-difference: gradients.
® Regions without edges (low-gradients) have low self-difference
® Regions with edges (gradients in one direction) have some self-difference

® Regions with corners (gradients in multiple directions) have high self-difference
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Autocorrelation of gradient image

f. is gradient in x direction, f, is gradient in y direction

W is a region within the image
Structure tensor

Slide from lecture Digital Image Processing @ Technische Universitit Berlin
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Structure tensor: edge
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= We do not necessarily want to describe the whole image.
= Which parts are most descriptive?

= Corners are even more interesting.



Structure tensor: edge
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= We do not necessarily want to describe the whole image.
= Which parts are most descriptive?

= Corners are even more interesting.



Structure tensor: corner
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= We do not necessarily want to describe the whole image.
= Which parts are most descriptive?

= Corners are even more interesting.



Structure tensor: eigenvalues

® Both eigenvalues ~ 0 — unstructured area
® One eigenvalues = 0 — edge

® Both eigenvalues > 0 — corner
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Structure tensor: eigenvalues

det(A) — atr(A)2 =M — (A + )\2)2 (1)

det(A) A1 A2

tr(A) (M1 + A\a) @)

26/32



Keypoints using Harris corner detector

e Use weighted sum (Gaussian) for entries in structure tensor

e Non-maximum supression as in Canny edge detector
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Which parts of the image are most descriptive? » Result of Harris corner detector
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As good as it gets? No!
® Harris is not invariant to scalel

e HOG is not invariant to rotation!
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As good as it gets? SIFT (Scale-invariant feature transform)?
e Keypoint detection and feature descriptors in one method
e Keypoint detection and descriptor based on gradients similar to HOG/Harris
e Uses different scales of the image to achieve scale invariance

® Uses gradient orientation normalization to achieve scale invariance

2David G.Lowe, Distinctive Image Features from Scale-Invariant Keypoints
30/32



Scale spaces are often used to achieve scale-invariance
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DoG emphasizes edges
We search for edges on multiple scales

Non-maximum supression in scale space rejects points with low contrast



e SIFT, HOG and Harris are among the most popular but there are many others

® Metrics for relevance can be defined on higher levels (saliency and attention)
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