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• Images in pixel space describe a point in a high dimensional space
• If we ignore spatial relation of pixels it is a point in a space with wxhxc dimensions
• Small changes in the real world scene lead to big changes in pixel space
• In this scene we see two times the same location in Berlin from two slightly different

angles at different times.



3 / 32

• Two times the same image, with and without noise.
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• Simple linear transformations in object space (e.g translation of an object), moves the
data point in pixel space to a completely different location (highly non-linear)



Categorize image content

Krizhevsky et al, ImageNet Classification with Deep Convolutional Neural Networks
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• If we want to interpret what is happening in the image we need a representation in a
space that allows a similarity measure

• Two images or image patches that show the same thing with respect to our task should
be similar in representation space

• We want to be able to compare images or image patches for various reasons: categorize
image content, ...



Finding/tracking objects

David G.Lowe, Distinctive Image Features from Scale-Invariant Keypoints
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• finding and tracking objects, ...



Segmentation

Badrinarayanan et al, SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
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• segmentaion of regions, ...



Feature
• Abstract representation of image content
• Encodes relevant properties
• Describes full image or parts of it
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• If we want to interpret what is happening in the image we need a representation in a
space that allows a similarity measure

• Two images or image patches that show the same thing with respect to our task should
be similar in representation space



Invariance
• Translation
• Rotation
• Scale
• Illumination
• Specification
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• We need to find more abstract representations that describe the content of an image
invariant to properties that are irrelavant to the task.



Properties
• Shape
• Color
• Texture
• Location
• Motion
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• Potential properties of entities we want to describe.



Gradients
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• Even small lighting changes would make huge differences in pixel space.
• Gradient images alleviate that a little, but magnitude still varies with lighting.
• Contain information about texture and shape.
• Invariant to color.
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• We use the edge image as basis and partition it into a grid of cells.
• For every cell we count the ’votes’ for every pixel in the cell. I.e. add a weighted entry

into a histogram with the gradient direction of that pixel.
• Histogram entries are a vector that describes content of the image patch (cell).



• Concatenate cell histograms for description of larger region
• Use 180 degree binning to ignore edge direction
• Normalize histograms for region (contrast normalization)
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HOG (Histograms of oriented gradients)1

1Navneet Dalal and Bill Triggs, Histograms of oriented gradients for human detection
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• HOG is an image descriptor based on histograms of gradients
• It is one of many descriptors based on gradient images
• Picture shows a visualization from the paper, which I recommend to read as it is

comparably easy to understand but insightful.



Which parts of the image are most descriptive?
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• We do not necessarily want to describe the whole image.
• Which parts are most descriptive?



Which parts of the image are most descriptive?
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• We do not necessarily want to describe the whole image.
• Which parts are most descriptive?



Which parts of the image are most descriptive?
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• We do not necessarily want to describe the whole image.
• Which parts are most descriptive?
• Edges are more interesting than no edges.



Which parts of the image are most descriptive?
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• We do not necessarily want to describe the whole image.
• Which parts are most descriptive?
• Corners are even more interesting.



How to compute uniqueness of region?
• Compare patch with all other image patches of all images?
• We can compare the patch with all other patches within the same image (self-difference).
• To compute self-difference for the whole image would be very expensive.
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Approximate self-difference: gradients.
• Regions without edges (low-gradients) have low self-difference
• Regions with edges (gradients in one direction) have some self-difference
• Regions with corners (gradients in multiple directions) have high self-difference
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Structure tensor
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• Autocorrelation of gradient image
• fx is gradient in x direction, fy is gradient in y direction
• W is a region within the image
• Slide from lecture Digital Image Processing @ Technische Universität Berlin



Structure tensor: edge
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• We do not necessarily want to describe the whole image.
• Which parts are most descriptive?
• Corners are even more interesting.



Structure tensor: edge
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• We do not necessarily want to describe the whole image.
• Which parts are most descriptive?
• Corners are even more interesting.



Structure tensor: corner

24 / 32

• We do not necessarily want to describe the whole image.
• Which parts are most descriptive?
• Corners are even more interesting.



Structure tensor: eigenvalues

• Both eigenvalues ≈ 0 → unstructured area
• One eigenvalues ≈ 0 → edge
• Both eigenvalues > 0 → corner
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Structure tensor: eigenvalues

det(A)− αtr(A)2 = λ1λ2 − α(λ1 + λ2)2 (1)

det(A)
tr(A) = λ1λ2

(λ1 + λ2) (2)
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Keypoints using Harris corner detector

• Use weighted sum (Gaussian) for entries in structure tensor
• Non-maximum supression as in Canny edge detector
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Which parts of the image are most descriptive?
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• Result of Harris corner detector



As good as it gets? No!
• Harris is not invariant to scale!
• HOG is not invariant to rotation!
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As good as it gets? SIFT (Scale-invariant feature transform)2

• Keypoint detection and feature descriptors in one method
• Keypoint detection and descriptor based on gradients similar to HOG/Harris
• Uses different scales of the image to achieve scale invariance
• Uses gradient orientation normalization to achieve scale invariance

2David G.Lowe, Distinctive Image Features from Scale-Invariant Keypoints
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Scale spaces are often used to achieve scale-invariance
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• DoG emphasizes edges
• We search for edges on multiple scales
• Non-maximum supression in scale space rejects points with low contrast



• SIFT, HOG and Harris are among the most popular but there are many others
• Metrics for relevance can be defined on higher levels (saliency and attention)
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