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Introduction:

Image transformations:

g(x , y) = T [f (x , y)] where:
• f(x, y) is an input image

• g(x, y) is the output image

• T is an operator

Previous lecture(s):

• point operators
⇒ point operators act on individual pixels, ignoring surrounding pixels

(neighborhood of T=1x1 pixel)

⇒ intensity transformation functions (EX: change image contrast with g(x , y) = f (x , y)2)

• local operators
⇒ local operators transform pixel value f(x,y) based on surrounding pixels

(neighborhood of T>1x1 pixel)

⇒ linear operators (filtering with convolutions), morphological operators (filtering with morphology)

Today’s lecture:

• geometrical operators

⇒ geometrical operators do not change pixel value, instead ”move” it to a new position
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Homography
1. applications in image processing

Homography is used to transform an image from one projective plane to another

Applications in image processing:

• image stitching (e.g., mosaic and panoramas)

• image registration (e.g., ”fuse” datasets in unique coordinate frame)

• image warping (e.g., change image perspective, correct lense distortion, etc.)

• Structure from Motion (SfM) (i.e., 3D reconstruction from multiple images)

• and much more! (e.g., augmented reality, etc.)
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Homography
2. definition

Geometric transformations map points from one space to another:

(x ′, y ′) = f (x , y)

⇒ in linear algebra, linear transformations can be represented by matrix operations:

X ′ = MX (1)

where:

• X =

[
x
y

]
= original pixel coordinates

• X ′ =

[
x ′

y ′

]
= transformed pixel coordinates

• M =

[
a b
c d

]
= transformation matrix
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Homography
2. definition

The matrix equation: X ′ = MX
[
x ′

y ′

]
=

[
a b

c d

] [
x

y

]

Can we written as a linear system of equations:
{

x ′ = ax + by

y ′ = cx + dy
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2. definition

The matrix equation: X ′ = MX
[
x ′

y ′

]
=

[
a b

c d

] [
x

y

]

Can we written as a linear system of equations:
{

x ′ = ax + by

y ′ = cx + dy

Reminder: matrix multiplication
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Homography
2. definition

The matrix equation: X ′ = MX
[
x ′

y ′

]
=

[
a b

c d

] [
x

y

]

Can we written as a linear system of equations:
{

x ′ = ax + by

y ′ = cx + dy

The transformation matrix M will determine the type of
geometric transformation.
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Homography
2. definition

Example 1: scale points?

scaling

⇒ in Python this translates as:
import numpy as np

X = np.array([1, 1]).T # original coordinates (x, y)

M = np.array([[2,0], [0,2]]) # transformation matrix

X_prime = M @ X # transformed coordinates (x’, y’)

# returns: X_prime = array([2, 2])
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Homography
2. definition

Example 2: translate points?

translation
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Example 2: translate points?

translation

{
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Homography
2. definition

Example 2: translate points?

translation

{
x ′ = x + tx

y ′ = y + ty

M =
[

?
]

⇒ add a component to the coordinates: redefine X =

[
x

y

]
as X =

[
x

y

1

]
= ”augmented vector”

⇒ the transformation matrix to translate can now be defined as: M =
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0 1 ty
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]
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Homography
2. definition

Example 2: translate points?

translation

{
x ′ = x + tx

y ′ = y + ty

M =
[

?
]

⇒ add a component to the coordinates: redefine X =

[
x

y

]
as X =

[
x

y

1

]
= ”augmented vector”

⇒ the transformation matrix to translate can now be defined as: M =

[
1 0 tx

0 1 ty

0 0 1

]

⇒ hence the transformation coordinates can be calculated from:[
x′

y′

1

]
=

[
1 0 tx
0 1 ty
0 0 1

][
x
y
1

]

=

[
1x + 0y + 1tx
0x + 1y + 1ty
0x + 0y + 1

]

=

[
x + tx
y + ty

]
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Homography
2. definition

Example 3: other simple transformations?

rotation

{
x

′
= x ∗ cosθ − y ∗ sinθ

y
′

= x ∗ cosθ + y ∗ sinθ
M =




cosθ −sinθ 0
sinθ cosθ 0

0 0 1



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Homography
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Example 3: other simple transformations?

rotation

{
x

′
= x ∗ cosθ − y ∗ sinθ

y
′

= x ∗ cosθ + y ∗ sinθ
M =




cosθ −sinθ 0
sinθ cosθ 0

0 0 1




shear

{
x

′
= x + sv ∗ y

y
′

= x ∗ sh + y
M =




1 sh 0
sv 1 0
0 0 1



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Homography
2. definition

”primary” 2D transformations:

Transformation Type Transformation Matrix M Pixel Mapping Equation

Identity

[
1 0 0
0 1 0
0 0 1

]
x

′

= x

y
′

= y

Scaling

[
sx 0 0
0 sy 0
0 0 1

]
x

′

= sx ∗ x

y
′

= sy ∗ y

Translation

[
1 0 tx
0 1 ty
0 0 1

]
x

′

= x + tx

y
′

= y + ty

Rotation
(counter-clockwise about origin)

[
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

]
x

′

= x ∗ cosθ − y ∗ sinθ

y
′

= x ∗ cosθ + y ∗ sinθ

Shear

[
1 sh 0
sv 1 0
0 0 1

]
x

′

= x + sv ∗ y

y
′

= x ∗ sh + y
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Homography
2. definition

”composite” 2D transformations ⇒ concatenation of ”primary” transformations

Example 1: Euclidean transformation (a.k.a. ”rigid transform”, or ”motion”)
⇒ rotation followed by a translation

⇒ the transformation matrix is therefore defined as: (read from right to left, think like f (g(x))
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”composite” 2D transformations ⇒ concatenation of ”primary” transformations

Example 1: Euclidean transformation (a.k.a. ”rigid transform”, or ”motion”)
⇒ rotation followed by a translation

⇒ the transformation matrix is therefore defined as: (read from right to left, think like f (g(x))

M = Mtranslation · Mrotation

=

[
1 0 tx
0 1 ty
0 0 1

]
·

[
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

]

=

[
cosθ −sinθ tx
sinθ cosθ ty

0 0 1

]
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Homography
2. definition

”composite” 2D transformations ⇒ concatenation of ”primary” transformations

Example 1: Euclidean transformation (a.k.a. ”rigid transform”, or ”motion”)
⇒ rotation followed by a translation

⇒ the transformation matrix is therefore defined as: (read from right to left, think like f (g(x))

M = Mtranslation · Mrotation

=

[
1 0 tx
0 1 ty
0 0 1

]
·

[
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

]

=

[
cosθ −sinθ tx
sinθ cosθ ty

0 0 1

]

M 6= Mrotation · Mtranslation

6=

[
cosθ −sinθ 0
sinθ cosθ 0

0 0 1

]
·

[
1 0 tx
0 1 ty
0 0 1

]

6=

[
cosθ −sinθ tx cosθ − ty sinθ

sinθ cosθ ty sinθcosθ

0 0 1

]

order matters !
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Homography
2. definition

⇒ in Python this translates as:
import numpy as np

# set rotation transformation matrix

angle = np.deg2rad(45)

R = np.array([

[np.cos(angle), -np.sin(angle), 0],

[np.sin(angle), np.cos(angle), 0],

[0, 0, 1]])

# set translation transformation matrix

tx, ty = 1, .5

T = np.array([

[1, 0, tx],

[0, 1, ty],

[0, 0, 1]])

# set original coordinates

X = np.array([

[0, 0, 1], # point 1 (x,y,w)

[1, 0, 1], # point 2 (x,y,w)

[1, 1, 1], # point 3 (x,y,w)

[0, 1, 1]]) # point 4 (x,y,w)

# get euclidean transformation matrix as (1) rotation followed by (2) translation

M = T @ R

# get transformed coordinates (x’, y’)

X_prime = M @ X.T
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Homography
2. definition

”composite” 2D transformations:

Transformation Type Transformation Matrix M Pixel Mapping Equation

Euclidean transformation
(a.k.a. ”rigid transform”, or ”motion”)
= rotation → translation

[
cosθ −sinθ tx
sinθ cosθ ty

0 0 1

]
x′ = x ∗ cosθ − y ∗ sinθ + tx
y′ = x ∗ sinθ + y ∗ cosθ + ty

Similarity transformation

= rotation → translation → scale

[
a −b tx
b a ty
0 0 1

]
x′ = s ∗ x ∗ cosθ − s ∗ y ∗ sinθ + tx
y′ = s ∗ x ∗ sinθ + s ∗ y ∗ cosθ + ty

Affine transformation
= similarity → shear

[
a b tx
c d ty
0 0 1

]
x′ = sx ∗ x ∗ cos(θ) − sy ∗ y ∗ sin(θ + shear) + tx
y′ = sx ∗ x ∗ sin(θ) + sy ∗ y ∗ cos(θ + shear) + ty

Projective transformation

(a.k.a. homography )

[
a b c
d e f
g h 1

]
encompasses rotation, scaling, skew and perspective
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Homography
2. definition

⇒ the homography matrix H has 8 degrees of freedom (DOF):

H =

[
H00 H01 H02

H10 H11 H12

H20 H21 1

]

⇒ estimating these parameters is key to transforming from one coordinate system to another
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Homography
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⇒ the homography matrix H has 8 degrees of freedom (DOF):

H =

[
H00 H01 H02

H10 H11 H12

H20 H21 1

]

⇒ estimating these parameters is key to transforming from one coordinate system to another
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Homography
3. estimating the homography matrix

How do we estimate these 8 parameters?

⇒ the Direct Linear Transformation (DLT) is an algorithm for computing H given > 4 correspondences

• Given: at least n > 4 point pairs Xi → X ′
i

• Wanted: 3×3 homography matrix H (8 DOF), for which X ′
i = HXi holds

1. Reformulate the general projective transformation into a linear homogeneous equation system, i.e. Ah = 0

General projective transformation:
X

′
= HX[

x′

y′

w′

]
=

[
H00 H01 H02
H10 H11 H12
H20 H21 1

][
x
y
w

]

Write as linear equation system: {
x′ = H00x + H01y + H02w

y′ = H10x + H11y + H12w

w′ = H20x + H21y + H22w

Convert back from homogeneous to Euclidean coordinates by dividing with w′, and move all terms to the left:

x′

w′
−

H00x + H01y + H02

H20x + H21y + H22

= 0

y′

w′
−

H10x + H11y + H12

H20x + H21y + H22

= 0
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i = HXi holds

1. Reformulate the general projective transformation into a linear homogeneous equation system, i.e. Ah = 0

General projective transformation:
X

′
= HX[

x′

y′

w′

]
=

[
H00 H01 H02
H10 H11 H12
H20 H21 1

][
x
y
w

]

Write as linear equation system: {
x′ = H00x + H01y + H02w

y′ = H10x + H11y + H12w

w′ = H20x + H21y + H22w

Convert back from homogeneous to Euclidean coordinates by dividing with w′, and move all terms to the left:

x′

w′
−

H00x + H01y + H02

H20x + H21y + H22

= 0

y′

w′
−

H10x + H11y + H12

H20x + H21y + H22

= 0
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Homography
3. estimating the homography matrix

1. (continued)

Multiplying by the denominator yields:

x′

w′
(H20x + H21y + H22) − H00x − H01y − H02 = 0

y′

w′
(H20x + H21y + H22) − H10x − H11y − H12 = 0

Which can be written as the system:[
−x −y −1 0 0 0 x′x

w′

x′y

w′

x′

w′

0 0 0 −x −y −1
y′x

w′

y′y

w′

y′

w′

]



H01
H02

.

.

.
H21
H22


 = 0

We now have to solve the homogeneous set of linear equations:

Ah = 0

where:
• A is the ”design matrix”, in which each point correspondence n fills 2 rows (2 observations per point: x and y coordinates),

so that n point correspondences yields a 2n × 9 matrix:

A =




−x1 −y1 −1 0 0 0
x′

1
x1

w′

x′

1
y1

w′

x′

1
w′

0 0 0 −x1 −y1 −1
y′

1
x1

w′

y′

1
y1

w′

y′

1
w′

.

.

.

.

.

.

.

.

.

.

.

.




• h is the vector of unknowns: h =
[

H01 H02 H02 H10 H11 H12 H20 H21 H22

]T
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3. estimating the homography matrix

1. (continued)
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x′

w′
(H20x + H21y + H22) − H00x − H01y − H02 = 0

y′

w′
(H20x + H21y + H22) − H10x − H11y − H12 = 0

Which can be written as the system:[
−x −y −1 0 0 0 x′x

w′
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w′
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y′

w′

]


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.

.

.
H21
H22


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

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x′

1
x1

w′

x′

1
y1

w′

x′

1
w′

0 0 0 −x1 −y1 −1
y′

1
x1

w′

y′

1
y1

w′

y′

1
w′

.

.

.

.

.

.

.

.

.

.

.

.



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[

H01 H02 H02 H10 H11 H12 H20 H21 H22

]T

53 / 82



Homography
3. estimating the homography matrix

1. (continued)
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.
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.
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
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3. estimating the homography matrix

1. (continued)
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• h is the vector of unknowns: h =
[

H01 H02 H02 H10 H11 H12 H20 H21 H22
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Homography
3. estimating the homography matrix

2. Solve the homogeneous equation system with Singular Value Decomposition (SVD)

Note: SVD is generally used for finding solutions of over-determined systems.

The ”singular value decomposition” of matrix A is a factorization of the form:

A = UDV
T

where:
- the diagonal elements of D (arranged to be non-negative and in decreasing order of magnitude), are called singular values

- the matrices U and V are called left and right singular vectors respectively

⇒ the least squares solution is found as the last row of the matrix V of the SVD

⇒ this translate in Python as:

import numpy as np

U,S,V = np.linalg.svd(A) # singular value decomposition of A

h = V[8] # least squares solution found as the last row of V

H = h.reshape((3,3)) # reshape into 3x3 homography matrix
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Homography
3. estimating the homography matrix

3. Conditioning & Unconditioning of points

In order to stabilize the solution, the points need to be conditioned before creating the design matrix A and solving for H

⇒ the points are conditioned by normalizing so that they have zero mean and unit standard deviation
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Homography
3. estimating the homography matrix

3. Conditioning & Unconditioning of points

In order to stabilize the solution, the points need to be conditioned before creating the design matrix A and solving for H

⇒ the points are conditioned by normalizing so that they have zero mean and unit standard deviation

⇒ can be done with the conditioning matrix C (consisting of scaling & translation to origin):

C =

[
s 0 tx
0 s ty
0 0 1

]
where: s = 1

max([stdx ,stdx y ])
, tx =

−meanx
max([stdx ,stdx y ])

, and ty =
−meany

max([stdx ,stdx y ])
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Homography
3. estimating the homography matrix

3. Conditioning & Unconditioning of points

In order to stabilize the solution, the points need to be conditioned before creating the design matrix A and solving for H

⇒ the points are conditioned by normalizing so that they have zero mean and unit standard deviation

⇒ can be done with the conditioning matrix C (consisting of scaling & translation to origin):

C =

[
s 0 tx
0 s ty
0 0 1

]
where: s = 1

max([stdx ,stdx y ])
, tx =

−meanx
max([stdx ,stdx y ])

, and ty =
−meany

max([stdx ,stdx y ])

⇒ conditioned coordinates are then calculated (for points pairs in original & new coordinate systems) as: X̃ = C1X and X̃ ′ = C2X ′
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Homography
3. estimating the homography matrix

3. (continued)

The solved H matrix is in conditioned coordinates, so it must be decondition before it can be used:

⇒ conditioned homography matrix: H̃ =

[
H̃00 H̃01 H̃02

H̃10 H̃11 H̃12

H̃20 H̃21 1

]

⇒ unconditioned homography matrix: H = C−1
2

H̃C1 =

[
H00 H01 H02
H10 H11 H12
H20 H21 1

]
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Homography
4. image warping

Then what?
⇒ applying the transformation matrix H on an image is called warping

Case examples:
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Case examples:

1. Projection rectification

⇒ use the estimated homography to change
the projection of an image
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Homography
4. image warping

Then what?
⇒ applying the transformation matrix H on an image is called warping

Case examples:

1. Projection rectification

⇒ use the estimated homography to change
the projection of an image

2. Panorama stitching

⇒ use the estimated homography(ies) to
adapt image(s) to a central image
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Interest Points + RANSAC
1. interest points

We have seen that homographies can be computed directly from corresponding points in two images:

⇒ since a full projective transformation (homography) has 8 degrees of freedom, and since each point corre-
spondence gives two equations, (one each for the x and y coordinates), > 4 points correspondences are needed
to compute H

However manually selecting corresponding points is cumbersome and not scalable!

Solution? Identify interest points in image(s)
⇒ provide distinctive image points
⇒ used in tracking (optical flow), object recognition, Structure from Motion

Example of most common interest points:

• Corner Detectors (e.g., Harris, Shi-Tomasi, Förstner, etc.)

• Blob and Ridge Detectors (e.g., LoG, DoG, Hessian, etc.)

• Features: SIFT, HOG, ORB, etc.
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Interest Points + RANSAC
1. interest points

We have seen that homographies can be computed directly from corresponding points in two images:

⇒ since a full projective transformation (homography) has 8 degrees of freedom, and since each point corre-
spondence gives two equations, (one each for the x and y coordinates), > 4 points correspondences are needed
to compute H

However manually selecting corresponding points is cumbersome and not scalable!

Solution? Identify interest points in image(s)
⇒ provide distinctive image points
⇒ used in tracking (optical flow), object recognition, Structure from Motion

Example of most common interest points:

• Corner Detectors (e.g., Harris, Shi-Tomasi, Förstner, etc.)

• Blob and Ridge Detectors (e.g., LoG, DoG, Hessian, etc.)

• Features: SIFT, HOG, ORB, etc.

we will discuss in more detail about interest points and features during the next lecture
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Interest Points + RANSAC
2. generate panorama with interest points + RANSAC

Example: Harris corners & ORB features detected automatically in an image
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Interest Points + RANSAC
2. generate panorama with interest points + RANSAC

How can we use interest points to create panoramas?

1. take images with overlap

2. detect ORB features in both images seperately

3. detect matching features between both images

4. remove outliers with RANSAC (robust iterative regression algorithm, resistant to outliers)

5. estimate homography and warp
76 / 82
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Interest Points + RANSAC
2. generate panorama with interest points + RANSAC

Exercices !
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