Deep Learning 03: Roadmap to using DL for your projects Lecture 12

Computer Vision for Geosciences

2021-06-04

Table of Contents

- 1. Define a project
- 2. Label the data
- 3. Load & the data
- 4. Select the model
- 5. Train and predict

So far we've used datasets which were already structured for Tensor Flow ...

⇒ how do we handle our own dataset?

1. Define a project

- 2. Label the data
- 3. Load & the data
- 4. Select the model
- 5. Train and predict

Project: classify volcano web-camera images

- ⇒ ash plume? gas plume? no visibility? night?
- ⇒ I have data and a problem to solve, now what?
 - 1. label the data
 - 2. load the data
 - 3. select the model
 - 4. train and evaluate!

Project: classify volcano web-camera images

- ⇒ ash plume? gas plume? no visibility? night?
- \Rightarrow I have data and a problem to solve, now what?
 - 1. label the data
 - 2. load the data
 - select the model
 - 4. train and evaluate!

1. Define a project

Project: classify volcano web-camera images

- ⇒ ash plume? gas plume? no visibility? night?
- \Rightarrow I have data and a problem to solve, now what?
 - 1. label the data
 - 2. load the data
 - 3. select the model
 - 4. train and evaluate!

Table of Contents

- 1. Define a project
- 2. Label the data
- 3. Load & the data
- 4. Select the model
- 5. Train and predict

2. Label the data

Label the data

 \Rightarrow go through your dataset, and <u>label</u> images from each class



Label the data

- \Rightarrow go through your dataset, and <u>label</u> images from each class
- \Rightarrow search for as much **variability** possible in each class

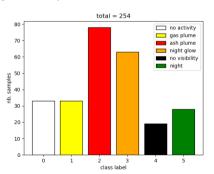
Label the data

- \Rightarrow go through your dataset, and <u>label</u> images from each class
- ⇒ search for as much **variability** possible in each class
- \Rightarrow store the <u>file name</u>, <u>label</u>, and any additional information in a file (ex: .csv)

```
labels.csv (Editing) **
file name, DateTimeDigitized, label
 100RECNX/RCNX0054.JPG,2018:07:18 22:02:15,1
 100RFCNX/RCNX0125.3PG.2018:07:18.22:08:50.2
 100RECNX/RCNX0135.JPG.2018:07:18 22:09:40.2
 100RECNX/RCNX0405.JPG,2018:07:18 22:32:10,1
 100RECNX/RCNX2205.JPG.2018:07:19 01:02:10.2
 100RECNX/RCNX3005.JPG.2018:07:19 02:08:50.2
 100RECNX/RCNX3015.JPG.2018:07:19 02:09:40.2
 100RECNX/RCNX3315.JPG,2018:07:19 02:34:40,2
 100RECNX/RCNX4645.JPG.2018:07:19 04:25:30.0
 100RECNX/RCNX5455.JPG,2018:07:19 05:33:00.0
 100RECNX/RCNX5655.JPG.2018:07:19 05:49:40.1
 100RECNX/RCNX5765.JPG.2018:07:19 05:58:50.0
 100RECNX/RCNX6155.JPG.2018:07:19 06:31:20.1
 100RECNX/RCNX6345.JPG.2018:07:19 06:47:10.0
 100RECNX/RCNX6365.JPG.2018:07:19 06:48:50.2
 100RECNX/RCNX6375.JPG.2018:07:19 06:49:40.2
 100RECNX/RCNX6385.JPG.2018:07:19 06:50:30.2
 100RECNX/RCNX6395.JPG.2018:07:19 06:51:20.2
 100RECNX/RCNX6505.JPG.2018:07:19 07:00:30.2
```

Label the data

- \Rightarrow go through your dataset, and <u>label</u> images from each class
- ⇒ search for as much **variability** possible in each class
- ⇒ store the **file name**, **label**, and any additional information in a file (ex: .csv)
- ⇒ check the **distribution** of your samples for each class



 $\underline{\textit{NB}}$: ideally should be equally distributed, but there are ways to overcome this (class weighting)

Table of Contents

- 1. Define a project
- 2. Label the data
- 3. Load & the data
- 4. Select the model
- 5. Train and predict

Loading the data

- ⇒ use Tensor Flow's **Data API** to create and manipulate **dataset object**
- \Rightarrow **shuffle** your data, and **split** into <u>train</u>, <u>validate</u>, and <u>test</u> dataset
- \Rightarrow one way to do that

Loading the data

- ⇒ use Tensor Flow's **Data API** to create and manipulate **dataset object**
- \Rightarrow **shuffle** your data, and **split** into <u>train</u>, <u>validate</u>, and <u>test</u> datasets
- \Rightarrow one way to do that

Loading the data

- ⇒ use Tensor Flow's **Data API** to create and manipulate **dataset object**
- \Rightarrow **shuffle** your data, and **split** into <u>train</u>, <u>validate</u>, and <u>test</u> datasets
- \Rightarrow one way to do that:

```
# Load labels file
df = pd.read_csv("train.csv")
# Set indexes for train, test, validation datasets
n = len(df)
idx = np.arange(n) # Create array with n integers
np.random.seed(123) # Set seed to keep same randomization
np.random.shuffle(idx) # Modify sequence in-place by shuffling its contents
train r, val r, test r = 0.8, 0.1, 0.1 # Set ratios for each dataset
idx for splitting = [int(n * train r), int(n * (train r+val r))]
train idx, val idx, test idx = np.split(idx, idx for splitting)
# Create tensor flow data set
file names = df["file name"].values
labels = df["label"].values
train ds raw = tf.data.Dataset.from tensor slices((file names[train idx], labels[train idx]))
val ds raw = tf.data.Dataset.from tensor slices((file names[val idx], labels[val idx]))
test ds raw = tf.data.Dataset.from tensor slices((file names[test idx], labels[test idx]))
```

At this stage, the datasets generated are <u>TensorSliceDataset</u> objects, storing *filename* and *label*:

```
for file_name, label in iter(train_ds_raw):
    print('---')
    print(file_name)
    print(label)

# Returns:
# ---
# tf. Tensor(b'104RECNX/RCNX3406.JPG', shape=(), dtype=string)
# tf. Tensor(3.0, shape=(), dtype=float64)
# ---
# tf. Tensor(b'100RECNX/RCNX6795.JPG', shape=(), dtype=string)
# tf. Tensor(2.0, shape=(), dtype=float64)
# ...
```

- ⇒ we now need to "instruct" which operations these datasets should undergoe during training
- ⇒ dataset objects allow to **chain transformations** easily: *map functions, define batch, etc.*

At this stage, the datasets generated are <u>TensorSliceDataset</u> objects, storing *filename* and *label*:

```
for file_name, label in iter(train_ds_raw):
    print('---')
    print(file_name)
    print(label)

# Returns:
# ---
# tf. Tensor(b'104RECNX/RCNX3406.JPG', shape=(), dtype=string)
# tf. Tensor(3.0, shape=(), dtype=float64)
# ---
# tf. Tensor(b'100RECNX/RCNX6795.JPG', shape=(), dtype=string)
# tf. Tensor(2.0, shape=(), dtype=float64)
# ...
```

- \Rightarrow we now need to "instruct" which operations these datasets should undergoe during training
- ⇒ dataset objects allow to **chain transformations** easily: *map functions, define batch, etc.*

At this stage, the datasets generated are <u>TensorSliceDataset</u> objects, storing *filename* and *label*:

```
for file_name, label in iter(train_ds_raw):
    print('---')
    print(file_name)
    print(label)

# Returns:
# ---
# tf. Tensor(b'104RECNX/RCNX3406.JPG', shape=(), dtype=string)
# tf. Tensor(3.0, shape=(), dtype=float64)
# ---
# tf. Tensor(b'100RECNX/RCNX6795.JPG', shape=(), dtype=string)
# tf. Tensor(2.0, shape=(), dtype=float64)
# ...
```

- \Rightarrow we now need to "instruct" which operations these datasets should undergoe during training
- ⇒ dataset objects allow to **chain transformations** easily: map functions, define batch, etc.

⇒ chain transformations:

```
resize_h, resize_w = 130, 230
def preprocess(image_file, label):
   # Read image
   image = tf.io.read_file(path_root + image_file)
   image = tf.image.decode_jpeg(image, channels=3) # returns uint8 tensor
   # Convert to float to prepare for resize
   image = tf.image.convert image dtvpe(image, tf.float32)
   # Resize image (original size/10)
   # => returns float [0-1]
   resized_image = tf.image.resize(image,
                                    size=(resize h, resize w), # (new height, new width)
                                    preserve aspect ratio=True)
   # Xception preprocess input:
   # => input: floating point with values in range [0, 255] (doc)
   # => returns scaled input pixels between -1 and 1 (https://keras.io/api/applications/xception/)
   resized image = tf.multiply(resized image, 255) # switch to range 0-255
   final image = tf.keras.applications.xception.preprocess input(resized image) # not clear how to give inputs (dtype/range)
   return final image, label
batch size = 32
train ds = train ds raw.shuffle(buffer size=1000, seed=None) # => at each epoch training will see samples in different order
train ds = train ds raw.map(preprocess).batch(batch size).prefetch(1)
val ds = val ds raw.map(preprocess).batch(batch size).prefetch(1)
test ds = test ds raw.map(preprocess).batch(batch size).prefetch(1)
```

⇒ when the dataset is "consumed" during training, these operations are performed on-the-fly

⇒ chain transformations:

```
resize_h, resize_w = 130, 230
def preprocess(image_file, label):
   # Read image
   image = tf.io.read_file(path_root + image_file)
   image = tf.image.decode_jpeg(image, channels=3) # returns uint8 tensor
   # Convert to float to prepare for resize
   image = tf.image.convert_image_dtype(image, tf.float32)
   # Resize image (original size/10)
   # => returns float [0-1]
   resized_image = tf.image.resize(image,
                                    size=(resize h, resize w), # (new height, new width)
                                    preserve aspect ratio=True)
   # Xception preprocess input:
   # => input: floating point with values in range [0, 255] (doc)
   # => returns scaled input pixels between -1 and 1 (https://keras.io/api/applications/xception/)
   resized image = tf.multiply(resized image, 255) # switch to range 0-255
   final image = tf.keras.applications.xception.preprocess input(resized image) # not clear how to give inputs (dtype/range)
   return final image, label
batch size = 32
train ds = train ds raw.shuffle(buffer size=1000, seed=None) # => at each epoch training will see samples in different order
train ds = train ds raw.map(preprocess).batch(batch size).prefetch(1)
val ds = val ds raw.map(preprocess).batch(batch size).prefetch(1)
test ds = test ds raw.map(preprocess).batch(batch size).prefetch(1)
```

 \Rightarrow when the dataset is "consumed" during training, these operations are performed on-the-fly

Table of Contents

- 1. Define a project
- 2. Label the data
- 3. Load & the data
- 4. Select the model
- 5. Train and predict

Select the model

⇒ when you have a small amount of labeled data, choose a transfer learning solution

Code from last week exercise:

<u>NB</u>: for simplicity we do not specify the fine-tuning steps here

Table of Contents

- 1. Define a project
- 2. Label the data
- 3. Load & the data
- 4. Select the model
- 5. Train and predict

Train

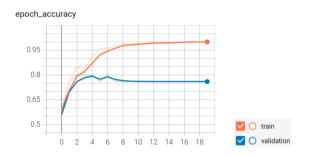
Recall our dataset does not have a uniform class distribution

⇒ we can compensate for that using the class_weight option:

```
# Calculate class weights
labels_int = labels.astype('int64')
class0 nb, class1 nb, class2 nb, class3 nb, class4 nb, class5 nb = np, bincount(labels int)
scaling factor = n samples / n classes
class weight = {0: (1 / class0_nb) * scaling_factor,
               1: (1 / class1 nb) * scaling factor.
                2: (1 / class2 nb) * scaling factor.
                3: (1 / class3 nb) * scaling factor.
                4: (1 / class4 nb) * scaling factor.
                5: (1 / class5 nb) * scaling factor
# Train
tensorboard callback = tf.keras.callbacks.TensorBoard(log dir=log dir, histogram freg=1, update freg='batch')
history = model.fit(train ds.
                    epochs=epochs.
                    validation data=val ds.
                    callbacks=[tensorboard callback].
                    class weight=class weight)
```

Train

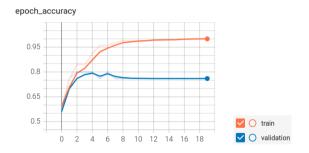
 \Rightarrow track accuracy of training & validation datasets with TensorBoard:



NB: there's room for improvement! e.g., more training data, data augmentation, regularization, fine-tuning, etc

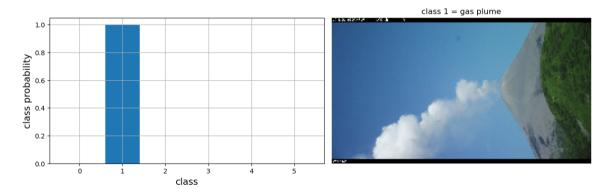
Train

 \Rightarrow track accuracy of training & validation datasets with TensorBoard:

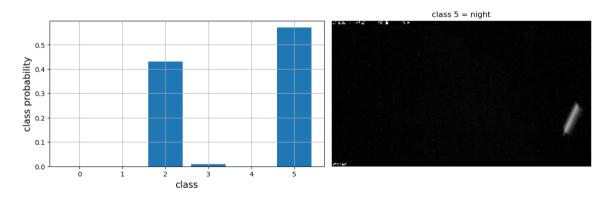


NB: there's room for improvement! e.g., more training data, data augmentation, regularization, fine-tuning, etc.

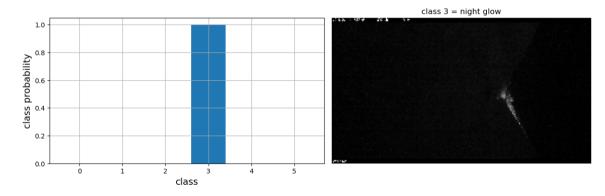
Predict



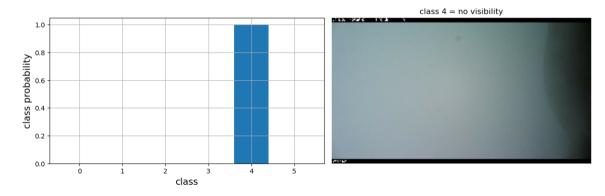
Predict



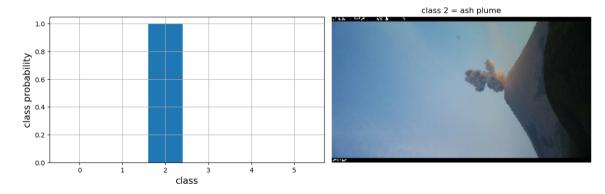
Predict



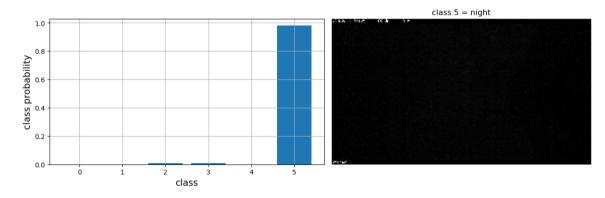
Predict



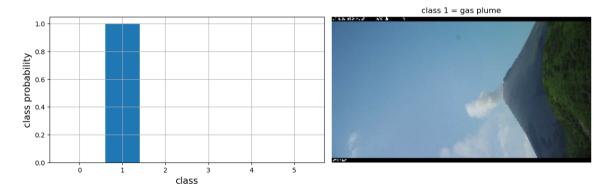
Predict



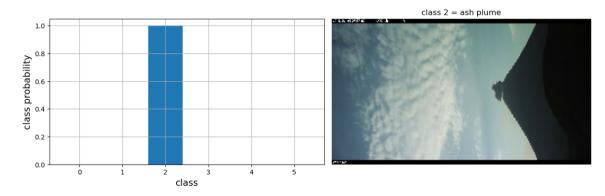
Predict



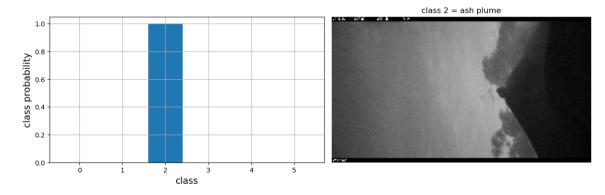
Predict



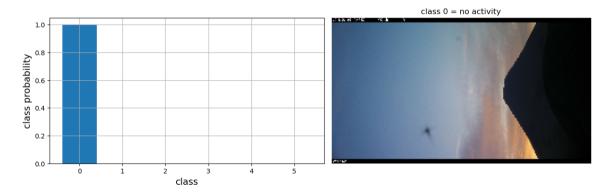
Predict



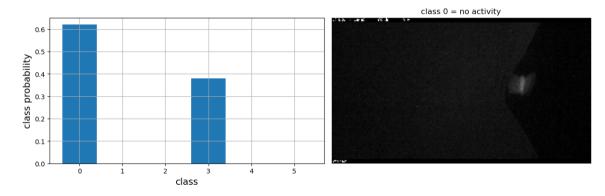
Predict



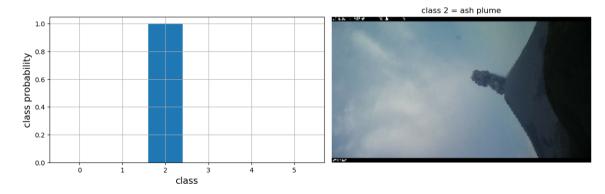
Predict



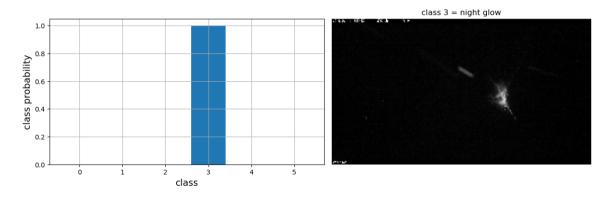
Predict



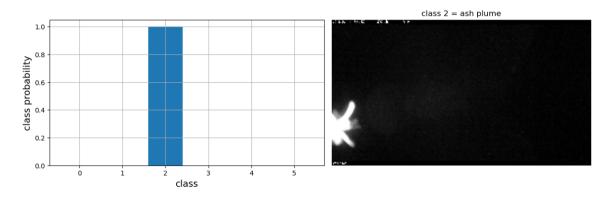
Predict



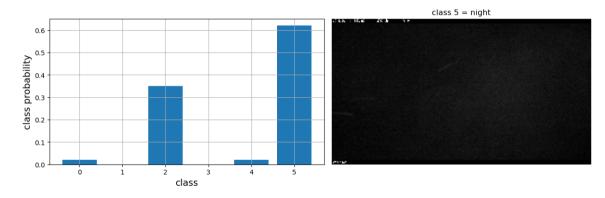
Predict



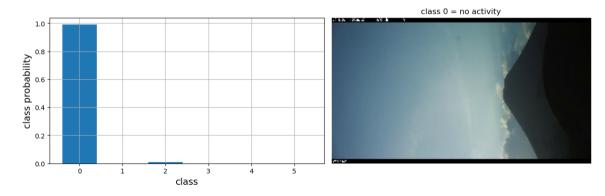
Predict



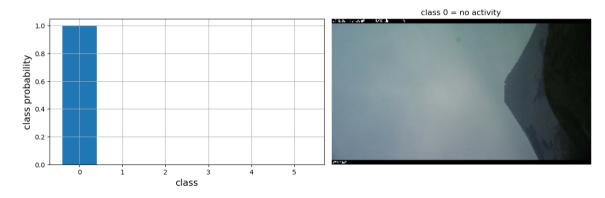
Predict



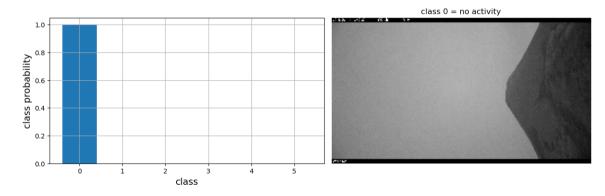
Predict



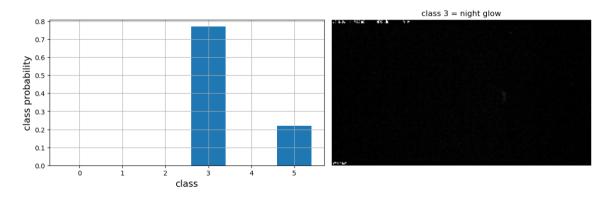
Predict



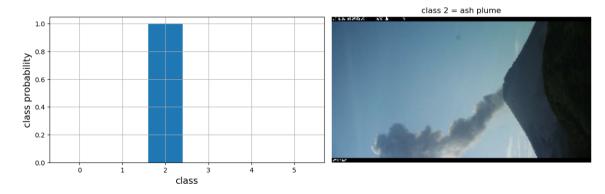
Predict



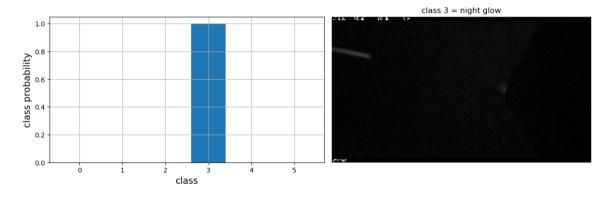
Predict



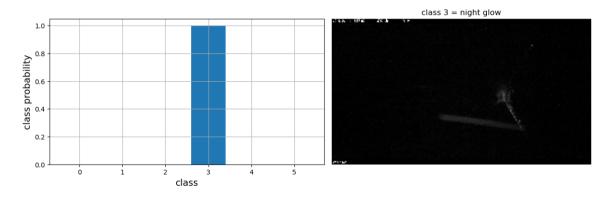
Predict



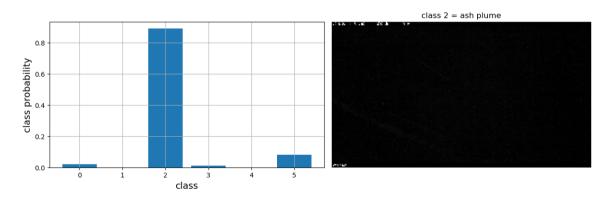
Predict



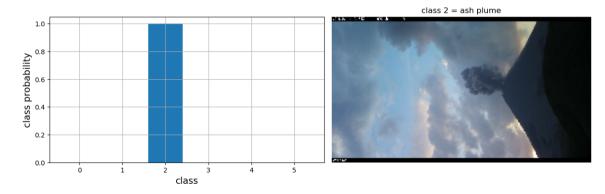
Predict



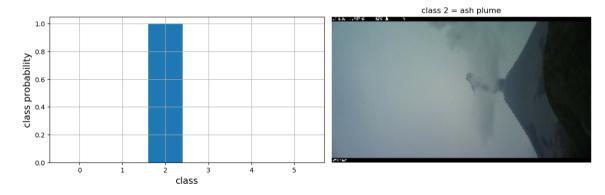
Predict



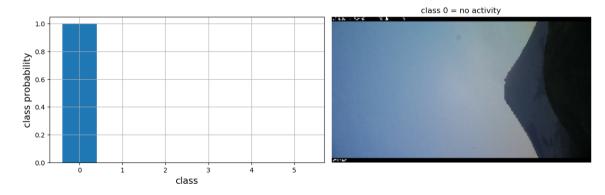
Predict



Predict



Predict



- ⇒ not bad for such little training dataset and time to train the model
- ⇒ but need to increase the number & diversity of the training images to avoid overfitting

- \Rightarrow not bad for such little training dataset and time to train the model
- \Rightarrow but need to increase the number & diversity of the training images to avoid overfitting!

THE END

(or rather the begining?)