Deep Learning 03: Roadmap to using DL for your projects

Lecture 12

Computer Vision for Geosciences

2021-06-04

RSO AUMA e
e e o
o L
%

VNIVERZDAD NACJONAL
AVFN°MA DE
MEXICO

Table of Contents

1. Define a project
2. Label the data

3. Load & the data
4. Select the model

5. Train and predict

So far we've used datasets which were already structured for Tensor Flow

= how do we handle our own dataset?

Table of Contents

1. Define a project

1. Define a project

Project: classify volcano web-camera images

= ash plume? gas plume? no visibility? night?

1. Define a project

Project: classify volcano web-camera images

= ash plume? gas plume? no visibility? night?

= | have data and a problem to solve, now what?

1. Define a project

Project: classify volcano web-camera images

= ash plume? gas plume? no visibility? night?
= | have data and a problem to solve, now what?

1. label the data

2. load the data

3. select the model

4. train and evaluate!

Table of Contents

2. Label the data

2. Label the data

Label the data

= go through your dataset, and label images from each class

0 1 2 3

56

2. Label the data

Label the data

= go through your dataset, and label images from each class
= search for as much variability possible in each class

example: variability in class "0 = no activity

= T 547G e oy

10/56

2. Label the data

Label the data

= go through your dataset, and label images from each class
= search for as much variability possible in each class
= store the file name, label, and any additional information in a file (ex: .csv)

labels.csv (Editing) %

[file_name,DateTimeDigitized, label

100RECNX/RCNXO054. 18
18BRECNX/RCNXB125. 18
186RECNX/RCNX8135. 18
10BRECNX/RCNX0485. 18
18BRECNX/RCNX2205. 19
106RECNX/RCNX3005. 19
18BRECNX/RCNX3015. 19
186RECNX/RCNX3315. 19
10BRECNX/RCNX4645. 19
18BRECNX/RCNX5455. 19
10ORECNX/RCNX5655. 19
10BRECNX/RCNX5765. 19
106RECNX/RCNX6155. 19
10BRECNX/RCNX6345. 19
18BRECNX/RCNX6365. 19
100RECNX/RCNX6375. 19
10BRECNX/RCNX6385. 19
106RECNX/RCNX6395. 19
10BRECNX/RCNX6505. 19

186RECNX/RCNX6735.JPG, 2018:07:19

NB: depending on how your data structured, you can also choose to store images in distinct folders (one for each class)
11/56

2. Label the data

Label the data

= go through your dataset, and label images from each class

= search for as much variability possible in each class

= store the file name, label, and any additional information in a file (ex: .csv)
= check the distribution of your samples for each class

total = 254

801 3 no activity

3 gas plume
701 E ash plume
— == night glow
607 EE no visibility
= night

nb. samples

0 1 2 3 4 5
class label

NB: ideally should be equally distributed, but there are ways to overcome this (class weighting) 12/56

Table of Contents

3. Load & the data

13 /56

3. Load & the data

Loading the data

= use Tensor Flow's Data API to create and manipulate dataset object

14 /56

3. Load & the data

Loading the data

= use Tensor Flow's Data API to create and manipulate dataset object
= shuffle your data, and split into train, validate, and test datasets

15 /56

3. Load & the data

Loading the data

= use Tensor Flow's Data API to create and manipulate dataset object
= shuffle your data, and split into train, validate, and test datasets
= one way to do that:

Load labels file
df = pd.read_csv("train.csv")

Set indexes for train, test, validation datasets

n = len(df)

idx = np.arange(n) # Create array with n integers

np.random.seed(123) # Set seed to keep same randomization
np.random.shuffle(idx) # Modify sequence in-place by shuffling its contents

train_r, val_r, test_r = 0.8, 0.1, 0.1 # Set ratios for each dataset
idx_for_splitting = [int(n * train_r), int(n * (train_r+val_r))]
train_idx, val_idx, test_idx = np.split(idx, idx_for_splitting)

Create tensor flow data set
file_names = df["file_name"].values
labels = df["label"].values

train_ds_raw = tf.data.Dataset.from_tensor_slices((file_names[train_idx], labels[train_idx]))
val_ds_raw = tf.data.Dataset.from_tensor_slices((file_names[val_idx], labels[val_idx]))

test_ds_raw = tf.data.Dataset.from_tensor_slices((file_names[test_idx], labels[test_idx]))

16 /56

3. Load & the data

Prepare the data

At this stage, the datasets generated are TensorSliceDataset objects, storing filename and label:

for file_name, label in iter(train_ds_raw):
print(’---’)
print(file_name)
print(label)

Returns:

tf.Tensor (b’104RECNX/RCNX3406.JPG’, shape=(), dtype=string)
tf.Tensor (3.0, shape=(), dtype=float64)

tf.Tensor (b’100RECNX/RCNX6795.JPG’, shape=(), dtype=string)
tf.Tensor (2.0, shape=(), dtype=float64)

W OE R R R RR

17 /56

3. Load & the data

Prepare the data

At this stage, the datasets generated are TensorSliceDataset objects, storing filename and label:

for file_name, label in iter(train_ds_raw):
print(’---’)
print(file_name)
print(label)

Returns:

tf.Tensor (b’104RECNX/RCNX3406.JPG’, shape=(), dtype=string)
tf.Tensor (3.0, shape=(), dtype=float64)

tf.Tensor (b’100RECNX/RCNX6795.JPG’, shape=(), dtype=string)
tf.Tensor (2.0, shape=(), dtype=float64)

W OE R R R RR

= we now need to “instruct” which operations these datasets should undergoe during training

18 /56

3. Load & the data

Prepare the data

At this stage, the datasets generated are TensorSliceDataset objects, storing filename and label:

for file_name, label in iter(train_ds_raw):
print(’---’)
print(file_name)
print(label)

Returns:

tf.Tensor (b’104RECNX/RCNX3406.JPG’, shape=(), dtype=string)
tf.Tensor (3.0, shape=(), dtype=float64)
tf.Tensor(b’100RECNX/RCNX6795. JPG’, shape=(), dtype=string)
tf.Tensor(2.0, shape=(), dtype=float64)

W OE R R R RR

= we now need to “instruct” which operations these datasets should undergoe during training

= dataset objects allow to chain transformations easily: map functions, define batch, etc.

19 /56

3. Load & the data

Prepare the data

= chain transformations:

resize_h, resize_w = 130, 230
def preprocess(image_file, label):

Read image
image = tf.io.read_file(path_root + image_file)
image = tf.image.decode_jpeg(image, channels=3) # returns uint8 tensor

Convert to float to prepare for resize
image = tf.image.convert_image_dtype(image, tf.float32)

Resize image (original size/10)

=> returns float [0-1]

resized_image = tf.image.resize(image,
size=(resize_h, resize_w), # (new_height, new_width)
preserve_aspect_ratio=True)

Xception preprocess_input:
=> input: floating point with values in range [0, 255] (doc)

=> returns scaled input pizels between -1 and 1 (https://keras.io/api/applications/cception/)

resized_image = tf.multiply(resized_image, 255) # switch to range 0-255

final_image = tf.keras.applications.xception.preprocess_input(resized_image) # not clear how to give inputs (dtype/range)

return final_image, label

batch_size = 32

train_ds = train_ds_raw.shuffle(buffer_size=1000, seed=None) # => at each epoch training will see samples in different order
train_ds = train_ds_raw.map(preprocess).batch(batch_size).prefetch(1)
val_ds = val_ds_raw.map(preprocess).batch(batch_size) .prefetch(1)

test_ds = test_ds_raw.map(preprocess) .batch(batch_size) .prefetch(1)

20 /56

3. Load & the data

Prepare the data

= chain transformations:

resize_h, resize_w = 130, 230
def preprocess(image_file, label):

Read image
image = tf.io.read_file(path_root + image_file)
image = tf.image.decode_jpeg(image, channels=3) # returns uint8 tensor

Convert to float to prepare for resize
image = tf.image.convert_image_dtype(image, tf.float32)

Resize image (original size/10)

=> returns float [0-1]

resized_image = tf.image.resize(image,
size=(resize_h, resize_w), # (new height, new width)
preserve_aspect_ratio=True)

Xception preprocess_input:
input: floating point with values in range [0, 255] (doc)

=> returns scaled input pizels between -1 and 1 (https://keras.io/api/applications/zception/)

resized_image = tf.multiply(resized_image, 255) # switch to range 0-255

final_image = tf.keras.applications.xception.preprocess_input(resized_image) # not clear how to give inputs (dtype/range)

return final_image, label

batch_size = 32

train_ds = train_ds_raw.shuffle(buffer_size=1000, seed=None) # => at each epoch training will see samples in different order
train_ds = train_ds_raw.map(preprocess).batch(batch_size).prefetch(1)
val_ds = val_ds_raw.map(preprocess).batch(batch_size) .prefetch(1)

test_ds = test_ds_raw.map(preprocess) .batch(batch_size) .prefetch(1)

= when the dataset is “consumed” during training, these operations are performed on-the-fly
21 /56

Table of Contents

4. Select the model

22 /56

4. Select the model

Select the model

=- when you have a small amount of labeled data, choose a transfer learning solution

Code from last week exercise:

Load Xception model and define as base model
base_model = tf.keras.applications.xception.Xception(weights="imagenet",
include_top=False,

input_shape=(resize_h, resize_w, 3))
Freeze base layers

for layer in base_model.layers:
layer.trainable = False

Add layers to train classifier
avg = tf.keras.layers.GlobalAveragePooling2D() (base_model.output) # takes base_model ouputs as input
output = tf.keras.layers.Dense(n_classes, activation="softmax")(avg) # takes GlobalAveragePooling2D layer as input

Create final model
model = tf.keras.Model(inputs=base_model.input, outputs=output)

Compile

optimizer = tf.keras.optimizers.Adam(learning_ rate=0.1)
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])

NB: for simplicity we do not specify the fine-tuning steps here

23 /56

Table of Contents

5. Train and predict

24 /56

5. Train and predict

Train

Recall our dataset does not have a uniform class distribution
= we can compensate for that using the class weight option:

Calculate class wetights
labels_int = labels.astype(’int64’)
classO_nb, classl_nb, class2_nb, class3_nb, class4_nb, class5_nb = np.bincount(labels_int)
scaling_factor = n_samples / n_classes
class_weight = {0: classO_nb) * scaling_factor,
8 classl_nb) * scaling_factor,
class2_nb) * scaling_factor,
class3_nb) * scaling_factor,
class4_nb) * scaling_factor,
classb_nb) * scaling_factor

YOS WN RO
N
B N

Train
tensorboard_callback = tf.keras4callbacks.TensorBoard(log_dir:log_dir, histogram_freq=1, update_freq:’batch’)
history = model.fit(train_ds,

epochs=epochs,

validation_data=val_ds,

callbacks=[tensorboard_callback],

class_weight=class_weight)

25 /56

5. Train and predict

Train

= track accuracy of training & validation datasets with TensorBoard:

epoch_accuracy

0.95
08 ~
0.6

05 train

0 2 4 6 8 10 12 14 16 18 [O validation

26 /56

5. Train and predict

Train

= track accuracy of training & validation datasets with TensorBoard:

epoch_accuracy

0.95
08 r
0.65
05 train
0 2 4 6 8 10 12 14 16 18 4 O validation

NB: there’s room for improvement! e.g., more training data, data augmentation, regularization, fine-tuning, etc.

27 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 1 = gas plume

1.0 1

o
@
L

class probability
g o

0.0 T

o o
Y] 'S
L L

28 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 5 = night

=
wn
L

I~
S
L

class probability
o

o
=
L

o
[N
L

0.0 T T

29 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 3 = night glow

N ll

class probability
o o o
S (=] [+

o
Y]
L

0.0 T T T T T

30/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 4 = no visibility

N IIIIII
<. 08
=
E
8 061
o
—
o
v 0.4
wn
o
(]
0.2 1
0.0 ! ! ! i IIIIII]
0 1 2 3 4 5
class

31/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume

1.0 1

o
@
L

class probability
g o

0.0 T T

o o
Y] 'S
L L

32/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 5 = night

1.0

0.8

0.6

0.4 1

class probability

0.2

0.0 T T T T

33 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 1 = gas plume

1.0 1

o
@
L

class probability
g o

o o
Y] 'S
L L

0.0 T

34/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume

1.0 1

o
@
L

class probability
o

0.0 T T

o o
Y] 'S
L L

35/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume

1.0 1

o
@
L

class probability
o

0.0 T T

o o
Y] 'S
L L

36 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 0 = no activity

1.0 1

o
@
L

<} o
nN B
N L

o =--

class probability
g o

0.0 -

37/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 0 = no activity

N ii
=" ..
2
o 0.4
o
a
[
5
w
wn
© 0.2
0.1 1
0.0 - !]
0 1 2 3 4 5
class

38 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume

1.0 1

o
@
L

class probability
o

0.0 T T

o o
Y] 'S
L L

39/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 3 = night glow

N ll

class probability
o o o
S (=] [+

o
Y]
L

0.0 T T T T T

40 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume

1.0 1

o
@
L

class probability
o

0.0 T T

o o
Y] 'S
L L

41 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 5 = night

o I~ o o
w S wn o
L i L L

class probability
o

o
=
L

1

42 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 0 = no activity

1.0

0.8 1

0.6

0.4

class probability

0.2

0.0 -

o=--

43 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 0 = no activity

1.0 1

o
@
L

<} o
nN B
N L

o =--

class probability
g o

0.0 -

44 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 0 = no activity

0.0 -

N ll
S, 081
£
%
8 06
<}
—_
a
v 0.4
v
©
(V]
) J.
0

45 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 3 = night glow

0.4

class probability

46 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume

1.0 1

o
@
L

class probability
g o

0.0 T T

o o
Y] 'S
L L

47 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 3 = night glow

N ll

class probability
o o o
S (=] [+

o
Y]
L

0.0 T T T T T

48 / 56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 3 = night glow

N ll

class probability
o o o
S (=] [+

o
Y]
L

0.0 T T T T T

49 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume

0.8 1

o
o
L

class probability

0.0 T T

=} o
[N} S
L L

50 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume

1.0 1

o
@
L

class probability
o

o o
Y] 'S
L L

0.0 T T

51/56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume

1.0 1

o
@
L

class probability
g o

0.0 T T

o o
Y] 'S
L L

52 /56

5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 0 = no activity

1.0 1

o
@
L

<} o
nN B
N L

o =--

class probability
g o

0.0 -

53 /56

5. Train and predict

= not bad for such little training dataset and time to train the model

54 /56

5. Train and predict

= not bad for such little training dataset and time to train the model

= but need to increase the number & diversity of the training images to avoid overfitting!

55 /56

5. Train and predict

THE END

(or rather the begining ?7)

56 /56

	Define a project
	Label the data
	Load & the data
	Select the model
	Train and predict

