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So far we've used datasets which were already structured for Tensor Flow

= how do we handle our own dataset?
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1. Define a project

Project: classify volcano web-camera images

= ash plume? gas plume? no visibility? night?
= | have data and a problem to solve, now what?

1. label the data

2. load the data

3. select the model

4. train and evaluate!
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Label the data

= go through your dataset, and label images from each class
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2. Label the data

Label the data

= go through your dataset, and label images from each class
= search for as much variability possible in each class

example: variability in class "0 = no activity

= T 547G e oy
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2. Label the data

Label the data

= go through your dataset, and label images from each class
= search for as much variability possible in each class
= store the file name, label, and any additional information in a file (ex: .csv)

labels.csv (Editing) %

[file_name,DateTimeDigitized, label

100RECNX/RCNXO054. 18
18BRECNX/RCNXB125. 18
186RECNX/RCNX8135. 18
10BRECNX/RCNX0485. 18
18BRECNX/RCNX2205. 19
106RECNX/RCNX3005. 19
18BRECNX/RCNX3015. 19
186RECNX/RCNX3315. 19
10BRECNX/RCNX4645. 19
18BRECNX/RCNX5455. 19
10ORECNX/RCNX5655. 19
10BRECNX/RCNX5765. 19
106RECNX/RCNX6155. 19
10BRECNX/RCNX6345. 19
18BRECNX/RCNX6365. 19
100RECNX/RCNX6375. 19
10BRECNX/RCNX6385. 19
106RECNX/RCNX6395. 19
10BRECNX/RCNX6505. 19

186RECNX/RCNX6735.JPG, 2018:07:19

NB: depending on how your data structured, you can also choose to store images in distinct folders (one for each class)
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2. Label the data

Label the data

= go through your dataset, and label images from each class

= search for as much variability possible in each class

= store the file name, label, and any additional information in a file (ex: .csv)
= check the distribution of your samples for each class

total = 254

801 3 no activity

3 gas plume
701 E ash plume
— == night glow
607 EE no visibility
= night

nb. samples

0 1 2 3 4 5
class label

NB: ideally should be equally distributed, but there are ways to overcome this (class weighting) 12/56
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3. Load & the data

Loading the data

= use Tensor Flow's Data API to create and manipulate dataset object
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3. Load & the data

Loading the data

= use Tensor Flow's Data API to create and manipulate dataset object
= shuffle your data, and split into train, validate, and test datasets
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3. Load & the data

Loading the data

= use Tensor Flow's Data API to create and manipulate dataset object
= shuffle your data, and split into train, validate, and test datasets
= one way to do that:

# Load labels file
df = pd.read_csv("train.csv")

# Set indexes for train, test, validation datasets

n = len(df)

idx = np.arange(n) # Create array with n integers

np.random.seed(123) # Set seed to keep same randomization
np.random.shuffle(idx) # Modify sequence in-place by shuffling its contents

train_r, val_r, test_r = 0.8, 0.1, 0.1 # Set ratios for each dataset
idx_for_splitting = [int(n * train_r), int(n * (train_r+val_r))]
train_idx, val_idx, test_idx = np.split(idx, idx_for_splitting)

# Create tensor flow data set
file_names = df["file_name"].values
labels = df["label"].values

train_ds_raw = tf.data.Dataset.from_tensor_slices((file_names[train_idx], labels[train_idx]))
val_ds_raw = tf.data.Dataset.from_tensor_slices((file_names[val_idx], labels[val_idx]))

test_ds_raw = tf.data.Dataset.from_tensor_slices((file_names[test_idx], labels[test_idx]))
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3. Load & the data

Prepare the data

At this stage, the datasets generated are TensorSliceDataset objects, storing filename and label:

for file_name, label in iter(train_ds_raw):
print(’---’)
print(file_name)
print(label)

Returns:

tf.Tensor (b’104RECNX/RCNX3406.JPG’, shape=(), dtype=string)
tf.Tensor (3.0, shape=(), dtype=float64)

tf.Tensor (b’100RECNX/RCNX6795.JPG’, shape=(), dtype=string)
tf.Tensor (2.0, shape=(), dtype=float64)

W OE R R R RR
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3. Load & the data

Prepare the data

At this stage, the datasets generated are TensorSliceDataset objects, storing filename and label:

for file_name, label in iter(train_ds_raw):
print(’---’)
print(file_name)
print(label)

Returns:

tf.Tensor (b’104RECNX/RCNX3406.JPG’, shape=(), dtype=string)
tf.Tensor (3.0, shape=(), dtype=float64)

tf.Tensor (b’100RECNX/RCNX6795.JPG’, shape=(), dtype=string)
tf.Tensor (2.0, shape=(), dtype=float64)
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= we now need to “instruct” which operations these datasets should undergoe during training
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3. Load & the data

Prepare the data

At this stage, the datasets generated are TensorSliceDataset objects, storing filename and label:

for file_name, label in iter(train_ds_raw):
print(’---’)
print(file_name)
print(label)

Returns:

tf.Tensor (b’104RECNX/RCNX3406.JPG’, shape=(), dtype=string)
tf.Tensor (3.0, shape=(), dtype=float64)
tf.Tensor(b’100RECNX/RCNX6795. JPG’, shape=(), dtype=string)
tf.Tensor(2.0, shape=(), dtype=float64)

W OE R R R RR

= we now need to “instruct” which operations these datasets should undergoe during training

= dataset objects allow to chain transformations easily: map functions, define batch, etc.
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3. Load & the data

Prepare the data

= chain transformations:

resize_h, resize_w = 130, 230
def preprocess(image_file, label):

# Read image
image = tf.io.read_file(path_root + image_file)
image = tf.image.decode_jpeg(image, channels=3) # returns uint8 tensor

# Convert to float to prepare for resize
image = tf.image.convert_image_dtype(image, tf.float32)

# Resize image (original size/10)

# => returns float [0-1]

resized_image = tf.image.resize(image,
size=(resize_h, resize_w), # (new_height, new_width)
preserve_aspect_ratio=True)

# Xception preprocess_input:
# => input: floating point with values in range [0, 255] (doc)

# => returns scaled input pizels between -1 and 1 (https://keras.io/api/applications/cception/)

resized_image = tf.multiply(resized_image, 255) # switch to range 0-255

final_image = tf.keras.applications.xception.preprocess_input(resized_image) # not clear how to give inputs (dtype/range)

return final_image, label

batch_size = 32

train_ds = train_ds_raw.shuffle(buffer_size=1000, seed=None) # => at each epoch training will see samples in different order
train_ds = train_ds_raw.map(preprocess).batch(batch_size).prefetch(1)
val_ds = val_ds_raw.map(preprocess).batch(batch_size) .prefetch(1)

test_ds = test_ds_raw.map(preprocess) .batch(batch_size) .prefetch(1)
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3. Load & the data

Prepare the data

= chain transformations:

resize_h, resize_w = 130, 230
def preprocess(image_file, label):

# Read image
image = tf.io.read_file(path_root + image_file)
image = tf.image.decode_jpeg(image, channels=3) # returns uint8 tensor

# Convert to float to prepare for resize
image = tf.image.convert_image_dtype(image, tf.float32)

# Resize image (original size/10)

# => returns float [0-1]

resized_image = tf.image.resize(image,
size=(resize_h, resize_w), # (new height, new width)
preserve_aspect_ratio=True)

# Xception preprocess_input:
input: floating point with values in range [0, 255] (doc)

# => returns scaled input pizels between -1 and 1 (https://keras.io/api/applications/zception/)

resized_image = tf.multiply(resized_image, 255) # switch to range 0-255

final_image = tf.keras.applications.xception.preprocess_input(resized_image) # not clear how to give inputs (dtype/range)

return final_image, label

batch_size = 32

train_ds = train_ds_raw.shuffle(buffer_size=1000, seed=None) # => at each epoch training will see samples in different order
train_ds = train_ds_raw.map(preprocess).batch(batch_size).prefetch(1)
val_ds = val_ds_raw.map(preprocess).batch(batch_size) .prefetch(1)

test_ds = test_ds_raw.map(preprocess) .batch(batch_size) .prefetch(1)

= when the dataset is “consumed” during training, these operations are performed on-the-fly
21 /56
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4. Select the model

Select the model

=- when you have a small amount of labeled data, choose a transfer learning solution

Code from last week exercise:

# Load Xception model and define as base model
base_model = tf.keras.applications.xception.Xception(weights="imagenet",
include_top=False,

input_shape=(resize_h, resize_w, 3))
# Freeze base layers

for layer in base_model.layers:
layer.trainable = False

# Add layers to train classifier
avg = tf.keras.layers.GlobalAveragePooling2D() (base_model.output) # takes base_model ouputs as input
output = tf.keras.layers.Dense(n_classes, activation="softmax")(avg) # takes GlobalAveragePooling2D layer as input

# Create final model
model = tf.keras.Model(inputs=base_model.input, outputs=output)

# Compile

optimizer = tf.keras.optimizers.Adam(learning_ rate=0.1)
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])

NB: for simplicity we do not specify the fine-tuning steps here
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5. Train and predict

Train

Recall our dataset does not have a uniform class distribution
= we can compensate for that using the class weight option:

# Calculate class wetights
labels_int = labels.astype(’int64’)
classO_nb, classl_nb, class2_nb, class3_nb, class4_nb, class5_nb = np.bincount(labels_int)
scaling_factor = n_samples / n_classes
class_weight = {0: classO_nb) * scaling_factor,
8 classl_nb) * scaling_factor,
class2_nb) * scaling_factor,
class3_nb) * scaling_factor,
class4_nb) * scaling_factor,
classb_nb) * scaling_factor

YOS WN RO
N
B N

# Train
tensorboard_callback = tf.keras4callbacks.TensorBoard(log_dir:log_dir, histogram_freq=1, update_freq:’batch’)
history = model.fit(train_ds,

epochs=epochs,

validation_data=val_ds,

callbacks=[tensorboard_callback],

class_weight=class_weight)
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5. Train and predict

Train

= track accuracy of training & validation datasets with TensorBoard:

epoch_accuracy

0.95
08 ~
0.6

05 train

0 2 4 6 8 10 12 14 16 18 [ O validation
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5. Train and predict

Train

= track accuracy of training & validation datasets with TensorBoard:

epoch_accuracy

0.95
08 r
0.65
05 train
0 2 4 6 8 10 12 14 16 18 4 O validation

NB: there’s room for improvement! e.g., more training data, data augmentation, regularization, fine-tuning, etc.
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 1 = gas plume
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 5 = night
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 3 = night glow
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 4 = no visibility
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 5 = night
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 1 = gas plume
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 0 = no activity
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 0 = no activity

N ii
=" ..
2
o 0.4
o
a
[
5 .. ..
w
wn
© 0.2
0.1 1
0.0 - ! ]
0 1 2 3 4 5
class

38 /56



5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 3 = night glow
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 5 = night
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 0 = no activity
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 0 = no activity
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 0 = no activity
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 3 = night glow

0.4

class probability
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 3 = night glow
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 3 = night glow

N ll

class probability
o o o
S (=] [+

o
Y]
L

0.0 T T T T T

49 /56



5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 2 = ash plume
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5. Train and predict

Predict

= how well is our model predicting the test dataset?

class 0 = no activity
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5. Train and predict

= not bad for such little training dataset and time to train the model
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5. Train and predict

= not bad for such little training dataset and time to train the model

= but need to increase the number & diversity of the training images to avoid overfitting!
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5. Train and predict

THE END

(or rather the begining ?7)
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